首页> 美国卫生研究院文献>PLoS Computational Biology >Temporal pattern separation in hippocampal neurons through multiplexed neural codes
【2h】

Temporal pattern separation in hippocampal neurons through multiplexed neural codes

机译:海马神经元的时空模式分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pattern separation is a central concept in current theories of episodic memory: this computation is thought to support our ability to avoid confusion between similar memories by transforming similar cortical input patterns of neural activity into dissimilar output patterns before their long-term storage in the hippocampus. Because there are many ways one can define patterns of neuronal activity and the similarity between them, pattern separation could in theory be achieved through multiple coding strategies. Using our recently developed assay that evaluates pattern separation in isolated tissue by controlling and recording the input and output spike trains of single hippocampal neurons, we explored neural codes through which pattern separation is performed by systematic testing of different similarity metrics and various time resolutions. We discovered that granule cells, the projection neurons of the dentate gyrus, can exhibit both pattern separation and its opposite computation, pattern convergence, depending on the neural code considered and the statistical structure of the input patterns. Pattern separation is favored when inputs are highly similar, and is achieved through spike time reorganization at short time scales (< 100 ms) as well as through variations in firing rate and burstiness at longer time scales. These multiplexed forms of pattern separation are network phenomena, notably controlled by GABAergic inhibition, that involve many celltypes with input-output transformations that participate in pattern separation to different extents and with complementary neural codes: a rate code for dentate fast-spiking interneurons, a burstiness code for hilar mossy cells and a synchrony code at long time scales for CA3 pyramidal cells. Therefore, the isolated hippocampal circuit itself is capable of performing temporal pattern separation using multiplexed coding strategies that might be essential to optimally disambiguate multimodal mnemonic representations.
机译:模式分离是当前情景记忆理论中的核心概念:这种计算被认为可以支持我们通过将相似的神经活动皮质输入模式转变为不相似的输出模式,然后长期存储在海马体中,从而避免相似记忆之间的混淆。由于可以通过多种方式定义神经元活动的模式及其之间的相似性,因此理论上可以通过多种编码策略实现模式分离。使用我们最近开发的分析方法,该方法通过控制和记录单个海马神经元的输入和输出尖峰序列来评估分离的组织中的模式分离,我们探索了通过系统测试不同相似性指标和各种时间分辨率来执行模式分离的神经代码。我们发现颗粒细胞,即齿状回的投射神经元,可以表现出模式分离及其相反的计算,模式收敛,这取决于所考虑的神经代码和输入模式的统计结构。当输入高度相似时,建议采用模式分离,这是通过在短时间尺度(<100 ms)上重新调整尖峰时间,以及在较长时间尺度上通过改变发射速率和突发性来实现的。这些模式分离的多重形式是网络现象,尤其是受GABA能抑制控制的网络现象,涉及许多具有输入-输出转换的细胞类型,这些输入-输出转换以不同程度参与模式分离,并具有互补的神经代码:齿状快速加标中子神经元的速率代码,肺门苔藓细胞的突发性代码和CA3锥体细胞的长时间同步代码。因此,孤立的海马回路本身能够使用多路复用编码策略执行时间模式分离,这可能是最佳消除多模式助记符表示歧义的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号