首页> 美国卫生研究院文献>PLoS Computational Biology >Information-theoretic analysis of multivariate single-cell signaling responses
【2h】

Information-theoretic analysis of multivariate single-cell signaling responses

机译:多元单细胞信号反应的信息理论分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mathematical methods of information theory appear to provide a useful language to describe how stimuli are encoded in activities of signaling effectors. Exploring the information-theoretic perspective, however, remains conceptually, experimentally and computationally challenging. Specifically, existing computational tools enable efficient analysis of relatively simple systems, usually with one input and output only. Moreover, their robust and readily applicable implementations are missing. Here, we propose a novel algorithm, SLEMI—statistical learning based estimation of mutual information, to analyze signaling systems with high-dimensional outputs and a large number of input values. Our approach is efficient in terms of computational time as well as sample size needed for accurate estimation. Analysis of the NF-κB single—cell signaling responses to TNF-α reveals that NF-κB signaling dynamics improves discrimination of high concentrations of TNF-α with a relatively modest impact on discrimination of low concentrations. Provided R-package allows the approach to be used by computational biologists with only elementary knowledge of information theory.
机译:信息论的数学方法似乎提供了一种有用的语言,来描述在信号传导效应子的活动中如何编码刺激。然而,探索信息理论的观点在概念,实验和计算上仍然具有挑战性。具体而言,现有的计算工具通常仅使用一个输入和输出即可对相对简单的系统进行有效的分析。而且,缺少其可靠且易于应用的实现。在这里,我们提出一种新颖的算法SLEMI(基于统计学习的互信息估计)来分析具有高维输出和大量输入值的信号系统。我们的方法在计算时间以及准确估计所需的样本量方面都是有效的。对TNF-α的NF-κB单细胞信号传导反应的分析表明,NF-κB信号传导动力学可改善对高浓度TNF-α的区分,而对低浓度的区分则有相对适度的影响。提供的R包允许仅具有信息理论基础知识的计算生物学家使用该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号