首页> 美国卫生研究院文献>PLoS Computational Biology >Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations
【2h】

Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations

机译:神经种群随时间变化的相互作用和宏观动力学的近似推论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The models in statistical physics such as an Ising model offer a convenient way to characterize stationary activity of neural populations. Such stationary activity of neurons may be expected for recordings from in vitro slices or anesthetized animals. However, modeling activity of cortical circuitries of awake animals has been more challenging because both spike-rates and interactions can change according to sensory stimulation, behavior, or an internal state of the brain. Previous approaches modeling the dynamics of neural interactions suffer from computational cost; therefore, its application was limited to only a dozen neurons. Here by introducing multiple analytic approximation methods to a state-space model of neural population activity, we make it possible to estimate dynamic pairwise interactions of up to 60 neurons. More specifically, we applied the pseudolikelihood approximation to the state-space model, and combined it with the Bethe or TAP mean-field approximation to make the sequential Bayesian estimation of the model parameters possible. The large-scale analysis allows us to investigate dynamics of macroscopic properties of neural circuitries underlying stimulus processing and behavior. We show that the model accurately estimates dynamics of network properties such as sparseness, entropy, and heat capacity by simulated data, and demonstrate utilities of these measures by analyzing activity of monkey V4 neurons as well as a simulated balanced network of spiking neurons.
机译:统计物理学中的模型(例如Ising模型)提供了表征神经种群平稳活动的便捷方法。对于体外切片或麻醉动物的记录,预期神经元的这种静止活性。但是,清醒动物的皮质回路的建模活动更具挑战性,因为尖峰率和相互作用都可以根据感觉刺激,行为或大脑的内部状态发生变化。建模神经相互作用动力学的先前方法遭受了计算成本的困扰。因此,它的应用仅限于十几个神经元。在这里,通过将多种解析近似方法引入神经种群活动的状态空间模型,我们可以估计多达60个神经元的动态成对相互作用。更具体地说,我们将伪似然近似应用于状态空间模型,并将其与Bethe或TAP平均场近似组合,以使模型参数的顺序贝叶斯估计成为可能。大规模分析使我们能够研究刺激过程和行为背后的神经回路的宏观特性。我们显示该模型可以通过模拟数据准确地估计网络属性(例如稀疏性,熵和热容)的动态,并通过分析猴子V4神经元的活动以及尖峰神经元的模拟平衡网络来证明这些措施的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号