首页> 美国卫生研究院文献>Clinical and Translational Science >Prediction of Cisplatin‐Induced Acute Kidney Injury Using an Interpretable Machine Learning Model and Electronic Medical Record Information
【2h】

Prediction of Cisplatin‐Induced Acute Kidney Injury Using an Interpretable Machine Learning Model and Electronic Medical Record Information

机译:使用可解释的机器学习模型和电子病历信息预测顺铂诱导的急性肾损伤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting cisplatin‐induced acute kidney injury (Cis‐AKI) before its onset is important. We aimed to develop a predictive model for Cis‐AKI using patient clinical information based on an interpretable machine learning algorithm. This single‐center retrospective study included hospitalized patients aged ≥ 18 years who received the first course of cisplatin chemotherapy from January 1, 2011, to December 31, 2020, at Nagoya City University Hospital. Cis‐AKI‐positive patients were defined using the serum creatinine criteria of the Kidney Disease Improving Global Outcomes guideline within 14 days of the last day of cisplatin administration in the first course. Patients who received cisplatin but did not develop AKI were considered negative. The CatBoost classification model was constructed with 29 explanatory variables, including laboratory values, concomitant medications, medical history, and cisplatin administration information. In total, 1253 patients were included, of whom 119 developed Cis‐AKI (9.5%). The median time of AKI onset was 7 days, and the interquartile range was 5–8 days. The mean ± standard deviation of the total cisplatin dose in the initial treatment was 77.9 ± 27.1 mg/m2 in Cis‐AKI‐positive patients and 69.3 ± 22.6 mg/m2 in Cis‐AKI‐negative patients. The predictive performance was an ROC‐AUC of 0.78. Model interpretation using SHapley Additive exPlanations showed that concomitant use of intravenous magnesium preparations was negatively correlated with Cis‐AKI, whereas loop diuretics were positively correlated. This suggests the need for magnesium preparations to prevent AKI, although the effects of diuretics may be small. Our model can predict Cis‐AKI early and may be helpful for its avoidance.
机译:在顺铂诱导的急性肾损伤 (Cis-AKI) 发作前预测其重要性。我们旨在使用基于可解释机器学习算法的患者临床信息开发 Cis-AKI 预测模型。这项单中心回顾性研究包括 2011 年 1 月 1 日至 2020 年 12 月 31 日在名古屋市立大学医院接受第一个疗程顺铂化疗的 ≥ 18 岁住院患者。在第一个疗程顺铂给药最后一天的 14 天内,使用肾脏病改善全球预后指南的血清肌酐标准定义顺式 AKI 阳性患者。接受顺铂治疗但未发生 AKI 的患者被认为是阴性的。CatBoost 分类模型由 29 个解释变量构建,包括实验室值、伴随药物、病史和顺铂给药信息。总共纳入 1253 例患者,其中 119 例 (9.5%) 发生顺式 AKI。AKI 发作的中位时间为 7 天,四分位距为 5-8 天。顺式 AKI 阳性患者初始治疗中顺铂总剂量的平均±标准差为 77.9 ± 27.1 mg/m2,顺式 AKI 阴性患者为 69.3 ± 22.6 mg/m2。预测性能为 ROC-AUC 为 0.78。使用 SHapley 加性解释的模型解释表明,同时使用静脉注射镁制剂与 Cis-AKI 呈负相关,而袢利尿剂呈正相关。这表明需要镁制剂来预防 AKI,尽管利尿剂的作用可能很小。我们的模型可以早期预测 Cis-AKI,并可能有助于避免它。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号