首页> 美国卫生研究院文献>PLoS Computational Biology >Computational Modeling of Seizure Dynamics Using Coupled Neuronal Networks: Factors Shaping Epileptiform Activity
【2h】

Computational Modeling of Seizure Dynamics Using Coupled Neuronal Networks: Factors Shaping Epileptiform Activity

机译:使用耦合神经元网络的癫痫发作动力学的计算模型:塑造癫痫样活动的因素。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes. We discuss potential mechanisms underlying such machinery and the relevance of our approach, supporting previous detailed modeling studies and reflecting on the limitations of our methodology.
机译:癫痫发作的动态变化跨越时空的多个尺度。了解癫痫发作机制需要确定这些量表内和跨这些量表的癫痫发作成分之间的关​​系,并分析其动态库。已经开发了数学模型来重现从单个神经元到神经种群的各个尺度的癫痫发作动态。在这项研究中,我们建立了尖峰神经元的网络模型,并系统地研究了条件,在该条件下,网络显示出癫痫病已知的紧急动态行为,这是对癫痫神经活动进行了充分研究的抽象模型。这种方法使我们能够研究在细胞和网络水平导致癫痫样放电的生物物理参数和变量。我们的网络模型由两个神经元种群组成,特征是快速兴奋性爆发性神经元和规则的尖峰抑制性神经元,它们嵌入以慢变量表示的常见细胞外环境中。通过系统地分析由仿真框架提供的参数格局,我们再现了癫痫持续状态中观察到的典型神经活动序列。我们发现,来自细胞外环境和电声耦合的外源性波动在癫痫发作的过程中起主要作用,这支持了先前的研究并进一步验证了我们的模型。我们还调查了自发性发作样事件的发生中化学突触耦合的影响。我们的研究结果表明,随着突触强度的变化,典型的尖峰波会随时间快速放电而随时间变化。我们证明了尖峰波,包括间质尖峰,主要是由抑制性神经元产生的,而在波部分的快速放电是由于兴奋性神经元引起的。将模拟的痕迹与来自该疾病不同阶段的啮齿动物的体内实验数据进行比较。我们得出的结论是,由于细胞外环境的外源性波动以及间隙连接通讯,导致整体兴奋性的缓慢变化将系统推向了阵发性状态。我们讨论了此类机制的潜在机制以及我们方法的相关性,支持先前的详细建模研究并反思了我们方法的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号