首页> 外文学位 >Computational study of correlated neuronal activity in a model neural network.
【24h】

Computational study of correlated neuronal activity in a model neural network.

机译:模型神经网络中相关神经元活动的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Synchronized oscillation is a commonly observed phenomenon in many parts of the brain. Among various types of these oscillations, gamma frequency rhythms in the cortex are thought to play an important role in the sensory information processing. To study how this neural oscillatory activity affects the information processing in the brain, a large neural network model of the visual cortex, built from Hodgkin-Huxley type excitatory and inhibitory neurons, was used. The spontaneous gamma oscillations in response to feedforward input spikes were generated by the isotropic local lateral connections between excitatory and inhibitory cells. The response function of a cortical neural network was considerably modified by the spontaneous oscillations. The response function of a population became more nearly linear in the presence of the oscillations, unlike a step-like single neuron response function. As a result, the sensitivity to weak inputs was increased and the encoding capability of the network was enhanced. The excitatory-excitatory cell couplings in the network generated spatially traveling waves of fluctuating voltage. Both the strength of the gamma oscillations and the spread of synchronized cortical activities were proportional to the excitatory-excitatory coupling strength. Moreover, the cortical network selectively amplified feedforward inputs according to their strengths, because the excitatory-excitatory coupling strength was dependent on the feedforward input strength. The relative weight of the thalamic feedforward and the recurrent cortical inputs to the visual cortex response was also modulated by the spontaneous cortical oscillations. The spontaneous local gamma oscillation increases the weight of cortical lateral inputs and decreases that of thalamic inputs to network outputs. Thus the spontaneous gamma oscillations can dynamically modulate the properties of the neural network response by controlling the relative weights of the feedforward and recurrent inputs to the network. This is a general mechanism by which neural oscillatory activity may control the information flow in the nervous system.
机译:同步振荡是大脑许多部分的常见现象。在这些振荡的各种类型中,皮质中的伽马频率节律被认为在感觉信息处理中起重要作用。为了研究这种神经振荡活动如何影响大脑中的信息处理,使用了由霍奇金-赫克斯利(Hodgkin-Huxley)型兴奋性和抑制性神经元构建的视觉皮层大型神经网络模型。响应性前馈输入尖峰的自发伽马振荡是由兴奋性和抑制性细胞之间的各向同性局部横向连接产生的。皮层神经网络的响应功能被自发振荡大大地改变了。在存在振荡的情况下,种群的响应函数变得更加接近线性,这与阶梯状的单个神经元响应函数不同。结果,增加了对弱输入的敏感性,并增强了网络的编码能力。网络中的兴奋性-兴奋性细胞偶联产生了电压波动的空间行波。伽马振荡的强度和同步皮层活动的扩散都与兴奋-兴奋耦合强度成正比。此外,皮质网络根据其强度选择性地放大了前馈输入,因为兴奋性-兴奋性耦合强度取决于前馈输入强度。丘脑前馈和循环皮层输入对视觉皮层反应的相对权重也受到自发性皮层振荡的调节。自发的局部伽马振荡会增加皮质侧向输入的权重,并降低丘脑输入到网络输出的权重。因此,自发的伽马振荡可以通过控制到网络的前馈和递归输入的相对权重来动态调节神经网络响应的属性。这是神经振荡活动可以控制神经系统信息流的一般机制。

著录项

  • 作者

    Paik, Se-Bum.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号