首页> 美国卫生研究院文献>Journal of Neurophysiology >Correlating Neuronal Activity and Neural Imaging: Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
【2h】

Correlating Neuronal Activity and Neural Imaging: Modeling fMRI signals can provide insights into neural processing in the cerebral cortex

机译:关联神经元活动和神经成像:对fMRI信号建模可以提供对大脑皮层神经处理的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals.
机译:每个刺激或任务都会激活哺乳动物皮质中的多个区域。可以使用功能磁共振成像(fMRI)来测量这些分布的激活,该功能在非侵入性脑成像方法中具有最佳的空间分辨率。不幸的是,fMRI激活与分布式皮层处理之间的关系仍不清楚,这是因为神经和fMRI激活之间的耦合仍然知之甚少,以及fMRI体素太大而无法直接感知局部神经事件。为了了解宏观数据下的局部处理,我们需要模型来模拟神经活动并提供可与fMRI数据进行比较的输出。这样的模型可以将神经机制描述为特定系统中输入和输出之间的数学函数,与生理机制几乎没有对应关系。或者,模型可以是仿生模型,包括与实验数据直接对应的生物学细节。在复杂性,计算效率和真实性之间进行了认真的平衡之后,仿生模拟应该能够洞察生物结构或功能如何促进实际数据处理以及促进理论驱动的神经科学实验。本文回顾了使用fMRI验证系统级计算模型的要求。特别是,我们研究介观仿生模型,其中包括来自现实生活网络的有限的详细信息,并能够进行神经质量作用的系统级仿真。此外,我们讨论了神经生理学和生物物理学的最新发展如何显着促进fMRI信号的建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号