首页> 外文期刊>Medical and Biological Engineering and Computing: Journal of the International Federation for Medical and Biological Engineering >A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain.
【24h】

A cable theory based biophysical model of resistance change in crab peripheral nerve and human cerebral cortex during neuronal depolarisation: implications for electrical impedance tomography of fast neural activity in the brain.

机译:基于电缆理论的神经元去极化过程中蟹周围神经和人大脑皮层电阻变化的生物物理模型:对大脑中快速神经活动的电阻抗层析成像的影响。

获取原文
获取原文并翻译 | 示例
       

摘要

Electrical impedance tomography (EIT) is a medical imaging method with the potential to image resistance changes which occur during neuronal depolarisation in the brain with a resolution of milliseconds and millimetres. Most biomedical EIT is conducted with applied current over 10 kHz, as this reduces electrode impedance and so instrumentation artefact. However, impedance changes during neuronal depolarization are negligible at such frequencies. In order to estimate optimal recording frequency and specify instrumentation requirements, we have modelled their amplitude and frequency dependence during evoked activity using cable theory. Published values were used for the electrical properties and geometry of cell processes. The model was adjusted for the filtering effect of membrane capacitance and proportion of active neurons. At DC, resistance decreases by 2.8 % in crab nerve during the compound action potential and 0.6 % (range 0.06-1.7 %) locally in cerebral cortex during evoked physiological activity. Both predictions correlate well with independent experimental data. This encourages the view that true tomographic imaging of fast neural activity in the brain is possible, at least with epicortical electrodes in the first instance. It is essential to undertake this at low frequencies below about 100 Hz as above 1 kHz the signal becomes vanishingly small.
机译:电阻抗断层扫描(EIT)是一种医学成像方法,具有成像电阻变化的潜力,该变化发生在大脑神经元去极化过程中,分辨率为毫秒和毫米。大多数生物医学EIT都是在超过10 kHz的施加电流下进行的,因为这会降低电极阻抗,从而降低仪器伪影。但是,在这种频率下,神经元去极化过程中的阻抗变化可以忽略不计。为了估计最佳记录频率并指定仪器要求,我们使用电缆理论对诱发活动期间其幅度和频率依赖性进行了建模。发布的值用于电池过程的电性能和几何形状。调整模型的膜电容和活性神经元比例的过滤效果。在直流电下,在复合动作电位期间,蟹神经的抵抗力降低了2.8%,在诱发的生理活动过程中,大脑皮层的抵抗力降低了0.6%(范围为0.06-1.7%)。两种预测都与独立的实验数据很好地相关。这鼓舞了这样的观点,即至少在最初情况下至少通过皮层电极可以对大脑中的快速神经活动进行真正的层析成像。必须在低于约100 Hz的低频下进行此操作,因为高于1 kHz时信号会消失得很小。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号