首页> 美国卫生研究院文献>PLoS Computational Biology >From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach
【2h】

From Sensory Signals to Modality-Independent Conceptual Representations: A Probabilistic Language of Thought Approach

机译:从感觉信号到模式无关的概念表示:一种概率语言思维方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models—that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model’s percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects’ ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.
机译:人们从与情态相关的感觉信号中学习与情态无关的概念表示。在这里,我们假设完成这一专长的任何系统都将包含三个组件:用于表征与情态无关的表示形式的表示语言,用于从与情态无关的表示形式到感觉信号的映射的一组特定于感觉的正向模型以及用于倒转模型-即使用感官信号来推断模态无关表示的算法。为了评估该假设,我们以计算模型的形式实例化了该假设,该计算模型从视觉和/或触觉信号中学习对象的形状表示。该模型使用概率语法来表征对象形状的模态无关表示,使用计算机图形工具包和人类手模拟器分别从对象表示映射到视觉和触觉特征,并使用贝叶斯推理算法来推断模态无关。视觉和/或触觉信号的对象表示。仿真结果表明,当查看,抓取或同时抓取一个对象时,该模型可以推断出相同的对象表示形式。也就是说,模型的感知是模态不变的。我们还报告了一项实验的结果,其中不同的受试者在不同的感官条件下对对象对的相似性进行了评估,并表明该模型可以非常准确地说明受试者的评分。从概念上讲,这项研究通过演示如何获取和使用与情态无关的表示形式,对理解模态不变性(一种重要的感知一致性类型)做出了重要贡献。从方法上讲,它通过展示如何将符号和统计方法结合起来以理解人类感知的各个方面,为认知建模(尤其是一种新兴的概率思想语言方法)做出了重要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号