首页> 美国卫生研究院文献>PLoS Computational Biology >Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics
【2h】

Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics

机译:通过逆向工程系统动力学推论控制中期动线粒体振荡的力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing.
机译:动粒体是多种蛋白复合物,介导姐妹染色单体从各自的极点到纺锤体微管束(称为动粒(K)纤维)的物理偶联。这些与动线连接的K纤维产生推力和拉力,这些推力和极弹力(PEF)和弹性姐妹间染色质结合起来控制染色体运动。使用校准的微针在减数分裂细胞中进行的经典实验测得了染色体的大致失速力,但缺乏能够系统确定作用于活细胞中动粒体力的方法。在这里,我们报告数学模型的发展,该数学模型可以拟合(逆向工程)到高分辨率的动线虫跟踪数据,从而估计模型参数并允许我们间接计算(相对)力分量(K纤维,弹簧力和PEF) )在体内作用于单个姊妹动植物。我们将我们的方法应用于成千上万的人类线粒体轨迹,并在方向转换过程中报告了时间力剖面中的不同特征。我们发现K纤维力是整个振荡过程中的主导力,而着丝粒弹簧是最小的,尽管它具有最强的方向转换特征。在整个中期板中还存在结构,其PEF势能很好地朝向外围,并随之减小了板的厚度和振幅。这种数据驱动的逆向工程方法足够灵活,可以拟合更复杂的机械模型。因此,动能动力学的数学模型可以首次在实验数据上进行全面测试。现在,将来的工作将能够确定单个蛋白质如何促进基于动线粒体的力产生和传感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号