首页> 美国卫生研究院文献>PLoS Computational Biology >Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling
【2h】

Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling

机译:转录组的非编码RNA的稳健鉴定需要系统发生信息的采样。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.
机译:非编码RNA是许多生物学过程不可或缺的,包括翻译,基因调控,宿主-病原体相互作用和环境传感。尽管基因组学现在是一个成熟的领域,但是从头鉴定的困难阻碍了我们鉴定细菌和古细菌基因组中非编码RNA元件的能力。表征转录组输出的新技术(特别是RNA-seq)的出现正在改善非编码RNA的鉴定和表达定量。但是,一个主要的挑战是如何将功能输出与转录噪声区分开来。为了确定现有转录组数据的注释是否有效捕获了所有功能输出,我们分析了跨越37个不同的古细菌和细菌的400多个可公开获得的RNA序列数据集。使用比较工具,我们确定了近一千个高度表达的候选非编码RNA。但是,我们的分析表明,识别非编码RNA输出的能力在很大程度上取决于系统发育采样。出乎意料的是,与蛋白质编码基因形成鲜明对比的是,有效使用比较方法的系统发育窗口非常狭窄:聚集公共数据集仅产生了一个系统发育簇,其中这些工具可用于从无条件假说中可靠地分离出未注释的非编码RNA。转录噪音。我们的结果表明,要实现转录组学数据的全部潜力,必须改变实验设计:有效的转录组学需要系统发育的采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号