首页> 美国卫生研究院文献>PLoS Computational Biology >Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology
【2h】

Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology

机译:计算网络设计的内在和外在变异性组合模型及其在合成生物学中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA – for example, on the same transcript – was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology.
机译:生物系统具有内在的可变性,其动力学受内在和外在来源的影响。这些系统通常仅具有部分特征,对于外部变异性和生化特性的特定来源具有很大的不确定性。此外,还没有很好地理解变异性的不同来源如何联合起来并共同影响生物系统。为了成功设计出性能强大的生物医学疗法或合成电路,至关重要的是要考虑不确定性和变异性的影响。在这里,我们介绍一个有效的建模和仿真框架,以研究同时受到多种可变性来源影响的系统,并将其应用于在小型遗传网络中做出设计决策,而这些遗传网络起着合成电路的基本设计元素的作用。具体来说,该框架用于探讨转录和转录后自动调节对简单遗传网络中蛋白质表达波动的影响。我们发现,根据特定的噪声源和网络参数,自动调节可以抑制或增加输出的可变性。我们表明,转录自调控比转录后在抑制多种内在和外在的大小和来源的变异性方面更为成功。我们得出以下设计原则来指导电路设计,以最佳地抑制变异性:(i)高蛋白协同作用和低miRNA协同作用,(ii)miRNA和mRNA之间不完美的互补性优于完美互补性,并且(iii)例如,在相同的转录本上,mRNA和miRNA最适合抑制蛋白质变异性。结果进一步表明,细胞之间动力学参数的相关性会影响抑制变异性的能力,并且瞬态的变异性不一定遵循与稳态的变异性相同的原理。我们的模型和发现提供了指导合成生物学设计原理的一般框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号