首页> 美国卫生研究院文献>PLoS Computational Biology >Mechanics of Undulatory Swimming in a Frictional Fluid
【2h】

Mechanics of Undulatory Swimming in a Frictional Fluid

机译:摩擦流体中波动游泳的力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a “granular frictional fluid” and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.
机译:沙鱼蜥蜴(Scincus scincus)在轴心起伏的情况下在颗粒状介质(沙)中游泳,以推动自身而不使用四肢。在以前的工作中,我们通过开发数值模拟来预测平均游泳速度,该数值模拟将实验测量的生物运动学纳入多体沙鱼模型。该模型与粒状介质的经实验验证的软球离散元方法模拟耦合。在本文中,我们使用模拟研究了“颗粒摩擦流体”中波动游泳的详细机理,并将预测结果与我们先前开发的抵抗力理论(RFT)进行了比较,该理论使用经验确定的颗粒阻力定律对沙石运动进行建模。该仿真显示,质心(CoM)的前进速度在头部拖曳的情况下在其平均速度附近发生振荡。整体身体运动与身体变形之间的耦合导致段沿身体的侧向位移的大小具有非平凡的模式。执行器扭矩和分段动力在身体中心附近最大,并朝着头部和尾部减小至零。大约30%的净游泳能力被散发在头部阻力中。功耗与生物学相关范围内的频率成比例,这证实了在沙鱼游沙期间摩擦力占主导地位。将仿真中测得的分段力与横向振动杆上的力进行比较,发现颗粒滞后效应会导致RFT中车身推力的高估。我们的模型为颗粒状环境中的生物运动提供了可测试的详细预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号