首页> 美国卫生研究院文献>PLoS Computational Biology >MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules
【2h】

MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules

机译:MORPH:概率对齐与顺式调控模块的隐马尔可夫模型相结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discovery and analysis of cis-regulatory modules (CRMs) in metazoan genomes is crucial for understanding the transcriptional control of development and many other biological processes. Cross-species sequence comparison holds much promise for improving computational prediction of CRMs, for elucidating their binding site composition, and for understanding how they evolve. Current methods for analyzing orthologous CRMs from multiple species rely upon sequence alignments produced by off-the-shelf alignment algorithms, which do not exploit the presence of binding sites in the sequences. We present here a unified probabilistic framework, called MORPH, that integrates the alignment task with binding site predictions, allowing more robust CRM analysis in two species. The framework sums over all possible alignments of two sequences, thus accounting for alignment ambiguities in a natural way. We perform extensive tests on orthologous CRMs from two moderately diverged species Drosophila melanogaster and D. mojavensis, to demonstrate the advantages of the new approach. We show that it can overcome certain computational artifacts of traditional alignment tools and provide a different, likely more accurate, picture of cis-regulatory evolution than that obtained from existing methods. The burgeoning field of cis-regulatory evolution, which is amply supported by the availability of many related genomes, is currently thwarted by the lack of accurate alignments of regulatory regions. Our work will fill in this void and enable more reliable analysis of CRM evolution.
机译:后生动物基因组中顺式调节模块(CRM)的发现和分析对于理解发育和许多其他生物过程的转录控制至关重要。跨物种序列比较在改善CRM的计算预测,阐明其结合位点组成以及了解其进化方式方面具有广阔的前景。用于分析来自多个物种的直系同源CRM的当前方法依赖于由现成的比对算法产生的序列比对,该算法不利用序列中结合位点的存在。我们在这里介绍一个称为MORPH的统一概率框架,该框架将比对任务与结合位点预测相结合,从而可以对两个物种进行更强大的CRM分析。该框架对两个序列的所有可能的比对进行求和,因此以自然的方式考虑了比对的歧义。我们对来自两个中等分化物种果蝇(Drosophila melanogaster)和D. mojavensis的直系同源CRM进行了广泛的测试,以证明新方法的优势。我们表明,它可以克服传统比对工具的某些计算伪像,并且比从现有方法获得的图像提供不同的,可能更准确的顺式调控进化图。许多相关基因组的可获得性充分支持了顺式调控进化的蓬勃发展领域,但目前由于调控区域缺乏精确的比对而受到阻碍。我们的工作将填补这一空白,并使CRM演变的分析更加可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号