首页> 美国卫生研究院文献>Clinical and Translational Science >Risk Factors Analysis of Cutaneous Adverse Drug Reactions Caused by Targeted Therapy and Immunotherapy Drugs for Oncology and Establishment of a Prediction Model
【2h】

Risk Factors Analysis of Cutaneous Adverse Drug Reactions Caused by Targeted Therapy and Immunotherapy Drugs for Oncology and Establishment of a Prediction Model

机译:靶向治疗和肿瘤免疫治疗药物引起的皮肤药物不良反应的危险因素分析及预测模型的建立

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Targeted therapy and immunotherapy drugs for oncology have greater efficacy and tolerability than cytotoxic chemotherapeutic drugs. However, the cutaneous adverse drug reactions associated with these newer therapies are more common and remain poorly predicted. An effective prediction model is urgently needed and essential. This retrospective study included 1052 patients, divided into train set, test set, and external validation set. As a data‐driven study, a total of 76 variables were collected. Univariate logistic analysis, least absolute shrinkage and selection operator regression, and stepwise logistic regression were utilized for feature screening. Finally, nine machine‐learning models were constructed and compared, and grid search was performed to adjust the parameters. Model performance was evaluated using calibration curve and the area under the receiver operating characteristic curve (AUROC). Nine risk factors were eventually identified: age, treatment modality, cancer types, history of allergies, age‐corrected Charlson comorbidity index, percentage of eosinophils, absolute number of monocytes, Eastern Cooperative Oncology Group Performance Status, and C‐reactive protein. Among the models, the logistic model performed best, demonstrating strong performance in test set (AUROC = 0.734) and external validation set (AUROC = 0.817). This study identified nine significant risk factors and developed a nomogram prediction model. These findings have important implications for optimizing therapeutic efficacy and maintaining the quality of life of patients from the perspective of managing cutaneous adverse drug reactions. Trial Registration: ChiCTR2400088422
机译:肿瘤靶向治疗和免疫治疗药物比细胞毒性化疗药物具有更高的疗效和耐受性。然而,与这些新疗法相关的皮肤药物不良反应更为常见,并且预测性仍然很差。一个有效的预测模型是迫切需要的,也是必要的。这项回顾性研究包括 1052 名患者,分为训练集、测试集和外部验证集。作为一项数据驱动的研究,共收集了 76 个变量。采用单因素 logistic 分析、最小绝对收缩和选择算子回归以及逐步 logistic 回归进行特征筛选。最后,构建并比较了 9 个机器学习模型,并进行了网格搜索以调整参数。使用校准曲线和受试者工作特征曲线下面积 (AUROC) 评估模型性能。最终确定了 9 个危险因素:年龄、治疗方式、癌症类型、过敏史、年龄校正的 Charlson 合并症指数、嗜酸性粒细胞百分比、单核细胞绝对数量、东部肿瘤合作组表现状态和 C 反应蛋白。在这些模型中,logistic 模型表现最好,在测试集 (AUROC = 0.734) 和外部验证集 (AUROC = 0.817) 中表现出强大的性能。本研究确定了 9 个重要的风险因素并开发了一个列线图预测模型。从管理皮肤药物不良反应的角度来看,这些发现对优化治疗效果和维持患者生活质量具有重要意义。试用注册号:ChiCTR2400088422

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号