首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >The Influence of the Specimen Shape and Loading Conditions on the Parameter Identification of a Viscoelastic Brain Model
【2h】

The Influence of the Specimen Shape and Loading Conditions on the Parameter Identification of a Viscoelastic Brain Model

机译:样品形状和加载条件对粘弹性脑模型参数辨识的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanical properties of brain under various loadings have been reported in the literature over the past 50 years. Step-and-hold tests have often been employed to characterize viscoelastic and nonlinear behavior of brain under high-rate shear deformation; however, the identification of brain material parameters is typically performed by neglecting the initial strain ramp and/or by assuming a uniform strain distribution in the brain samples. Using finite element (FE) simulations of shear tests, this study shows that these simplifications have a significant effect on the identified material properties in the case of cylindrical human brain specimens. Material models optimized using only the stress relaxation curve under predict the shear force during the strain ramp, mainly due to lower values of their instantaneous shear moduli. Similarly, material models optimized using an analytical approach, which assumes a uniform strain distribution, under predict peak shear forces in FE simulations. Reducing the specimen height showed to improve the model prediction, but no improvements were observed for cubic samples with heights similar to cylindrical samples. Models optimized using FE simulations show the closest response to the test data, so a FE-based optimization approach is recommended in future parameter identification studies of brain.
机译:在过去的50年中,已有文献报道了在各种负荷下大脑的机械性能。阶跃保持测试通常用于表征高速剪切变形下大脑的粘弹性和非线性行为。然而,大脑材料参数的识别通常是通过忽略初始应变斜率和/或假设大脑样本中的应变分布均匀来进行的。使用剪切试验的有限元(FE)模拟,这项研究表明,在圆柱状人脑标本的情况下,这些简化对所确定的材料特性具有重大影响。仅使用应力松弛曲线进行优化的材料模型可以预测应变斜坡期间的剪切力,这主要是由于其瞬时剪切模量较低。同样,在有限元模拟中,在预测峰值剪切力的作用下,使用假定均一应变分布的分析方法优化的材料模型。减小样品高度显示可以改善模型预测,但是对于高度类似于圆柱形样品的立方样品,则没有观察到改善。使用有限元模拟优化的模型显示出对测试数据的最接近响应,因此在未来的大脑参数识别研究中建议使用基于有限元的优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号