首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >The EM Method in a Probabilistic Wavelet-Based MRI Denoising
【2h】

The EM Method in a Probabilistic Wavelet-Based MRI Denoising

机译:基于概率小波的MRI去噪的EM方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.
机译:人体发热量和其他外部原因会干扰磁共振图像的采集并产生噪声。在这类图像中,当不存在信号时,噪声是瑞利分布的,其小波系数可以用高斯分布近似建模。无噪声的磁共振图像可以通过小波域中的拉普拉斯分布进行建模。为此,提出了一种新的磁共振图像去噪方法。该方法基于噪声或细节的条件概率执行小波系数的收缩。这种滤波方法所涉及的参数是通过期望最大化(EM)方法计算的,从而避免了使用噪声方差估计器的需要。研究了所提出的滤波器的效率,并与其他重要的滤波技术(例如Nowak的,Donoho-Johnstone的,Awate-Whitaker的以及非局部均值滤波器)在不同的2D和3D图像中进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号