首页> 美国卫生研究院文献>Educational and Psychological Measurement >The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models
【2h】

The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models

机译:在非参数多级潜在类模型中忽略嵌套结构级别的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In the present study, a simulation study was conducted to investigate the impact of ignoring the higher-level nesting structure. Three criteria—the model selection accuracy, the classification quality, and the parameter estimation accuracy—were used to evaluate the impact of ignoring the nested data structure. The results of the simulation study showed that ignoring higher-level nesting structure in an MLCM resulted in the poor performance of the Bayesian information criterion to recover the true latent structure, the inaccurate classification of individuals into latent classes, and the inflation of standard errors for parameter estimates, while the parameter estimates were not biased. This article concludes with remarks on ignoring the nested structure in nonparametric MLCMs, as well as recommendations for applied researchers when LCM is used for data collected from a multilevel nested structure.
机译:多层潜在类模型(MLCM)是潜在类模型(LCM)的多层扩展,用于分析嵌套结构数据结构。 MLCM的非参数版本在较高层的嵌套结构中假设一个离散的潜在变量,以解决嵌套在较高层单元中的观测值之间的依赖性。在本研究中,进行了模拟研究,以研究忽略高层嵌套结构的影响。使用三个标准(模型选择准确性,分类质量和参数估计准确性)来评估忽略嵌套数据结构的影响。仿真研究的结果表明,忽略MLCM中的更高层嵌套结构会导致贝叶斯信息准则在恢复真实潜在结构方面表现不佳,将个人归类为潜在类别的方法不正确,并且会增加标准误差。参数估计,而参数估计则没有偏差。本文以在非参数MLCM中忽略嵌套结构的评论作为结束语,以及在将LCM用于从多层嵌套结构中收集数据时向应用研究人员的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号