首页> 美国卫生研究院文献>Environmental Health Perspectives >Analysis of air pollution effects: uncertainties in proceeding to standards.
【2h】

Analysis of air pollution effects: uncertainties in proceeding to standards.

机译:空气污染影响分析:达到标准的不确定性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Uncertainties in the collection and assessment of scientific information make ambient air quality standard setting difficult. Uncertainties occur in the estimation of the medical parameters under test due to the inherent random variability encountered in sampling the parameters. The most common method of dealing with random variability is statistical significance testing. The main caution offered in regard to that analysis is to avoid calling a nonsignificant result negative, unless the circumstances are such that the smallest effect which indicates likely harm to health could have been detected with sufficiently high probability. Uncertainties also play a crucial role in evaluating the implications that even statistically significant test results have for human health. A signal-detection model, developed to explain expert performance in evaluating the results of such diagnostic tests as X-rays, is presented as an analogy for the situation facing experts who are evaluating the implications of health data that is being considered for use in setting a standard. If criteria are too strict for accepting data as evidence of harm to health, then it is argued that, as a consequence, the decision process will not have sufficient ability to discriminate against false-negative results. False-negative results are those that incorrectly conclude there is no threat when, in fact, a particular level of pollutant is actually a threat to health.
机译:科学信息收集和评估的不确定性使环境空气质量标准制定变得困难。由于在对参数进行采样时会遇到固有的随机变异性,因此在估计被测医学参数时会出现不确定性。处理随机变异性的最常见方法是统计显着性检验。关于该分析的主要注意事项是避免称不重要的结果为阴性,除非情况是这样的,即已以足够高的概率检测到表明可能危害健康的最小影响。不确定性在评估即使是具有统计意义的测试结果对人体健康的影响方面也起着至关重要的作用。提出了一种信号检测模型,用于解释专家在评估诸如X射线等诊断测试结果中的性能,以此来模拟专家所面临的情况,这些专家正在评估考虑用于设置的健康数据的含义一个标准。如果标准太严格而无法接受数据作为危害健康的证据,那么就有理由认为,决策过程将没有足够的能力来区分假阴性结果。假阴性结果是错误地得出结论,即实际上特定水平的污染物实际上对健康构成威胁时没有威胁的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号