首页> 美国卫生研究院文献>Eukaryotic Cell >Role of the Npr1 Kinase in Ammonium Transport and Signaling by the Ammonium Permease Mep2 in Candida albicans
【2h】

Role of the Npr1 Kinase in Ammonium Transport and Signaling by the Ammonium Permease Mep2 in Candida albicans

机译:Npr1激酶在白色念珠菌中的铵转运酶Mep2转运和信号传递中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ammonium permease Mep2 induces a switch from unicellular yeast to filamentous growth in response to nitrogen limitation in Saccharomyces cerevisiae and Candida albicans. In S. cerevisiae, the function of Mep2 and other ammonium permeases depends on the protein kinase Npr1. Mutants lacking NPR1 cannot grow on low concentrations of ammonium and do not filament under limiting nitrogen conditions. A G349C mutation in Mep2 renders the protein independent of Npr1 and results in increased ammonium transport and hyperfilamentous growth, suggesting that the signaling activity of Mep2 directly correlates with its ammonium transport activity. In this study, we investigated the role of Npr1 in ammonium transport and Mep2-mediated filamentation in C. albicans. We found that the two ammonium permeases Mep1 and Mep2 of C. albicans differ in their dependency on Npr1. While Mep1 could function well in the absence of the Npr1 kinase, ammonium transport by Mep2 was virtually abolished in npr1Δ mutants. However, the dependence of Mep2 activity on Npr1 was relieved at higher temperatures (37°C), and Mep2 could efficiently induce filamentous growth under limiting nitrogen conditions in npr1Δ mutants. Like in S. cerevisiae, mutation of the conserved glycine at position 343 in Mep2 of C. albicans to cysteine resulted in Npr1-independent ammonium uptake. In striking contrast, however, the mutation abolished the ability of Mep2 to induce filamentous growth both in the wild type and in npr1Δ mutants. Therefore, a mutation that improves ammonium transport by Mep2 under nonpermissible conditions eliminates its signaling activity in C. albicans.
机译:响应于酿酒酵母和白色念珠菌中的氮限制,铵通透酶Mep2诱导了从单细胞酵母向丝状生长的转换。在酿酒酵母中,Mep2和其他铵通透酶的功能取决于蛋白激酶Npr1。缺乏NPR1的突变体不能在低浓度的铵盐下生长,并且在有限的氮条件下不能长丝。 Mep2中的G349C突变使蛋白质独立于Npr1并导致铵转运和超丝生长增加,表明Mep2的信号传导活性与其铵转运活性直接相关。在这项研究中,我们调查了Npr1在白色念珠菌的铵转运和Mep2介导的丝化中的作用。我们发现白色念珠菌的两个铵通透酶Mep1和Mep2在对Npr1的依赖性上有所不同。虽然在没有Npr1激酶的情况下Mep1可以很好地发挥功能,但在npr1Δ突变体中实际上消除了Mep2的铵转运。然而,在较高的温度(37°C)下,Mep2活性对Npr1的依赖性得以缓解,并且在npr1Δ突变体的有限氮条件下,Mep2可以有效诱导丝状生长。像酿酒酵母一样,白色念珠菌Mep2的343位保守的甘氨酸突变为半胱氨酸,导致不依赖Npr1的铵盐吸收。与之形成鲜明对比的是,该突变消除了Mep2在野生型和npr1Δ突变体中诱导丝状生长的能力。因此,在不允许的条件下,通过Mep2改善铵转运的突变消除了其在白色念珠菌中的信号传导活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号