首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit
【2h】

Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit

机译:小脑颗粒层回路中肾小球抑制的整合和调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inhibitory synapses can be organized in different ways and be regulated by a multitude of mechanisms. One of the best known examples is provided by the inhibitory synapses formed by Golgi cells onto granule cells in the cerebellar glomeruli. These synapses are GABAergic and inhibit granule cells through two main mechanisms, phasic and tonic. The former is based on vesicular neurotransmitter release, the latter on the establishment of tonic γ-aminobutyric acid (GABA) levels determined by spillover and regulation of GABA uptake. The mechanisms of post-synaptic integration have been clarified to a considerable extent and have been shown to differentially involve α1 and α6 subunit-containing GABA-A receptors. Here, after reviewing the basic mechanisms of GABAergic transmission in the cerebellar glomeruli, we examine how inhibition controls signal transfer at the mossy fiber-granule cell relay. First of all, we consider how vesicular release impacts on signal timing and how tonic GABA levels control neurotransmission gain. Then, we analyze the integration of these inhibitory mechanisms within the granular layer network. Interestingly, it turns out that glomerular inhibition is just one element in a large integrated signaling system controlled at various levels by metabotropic receptors. GABA-B receptor activation by ambient GABA regulates glutamate release from mossy fibers through a pre-synaptic cross-talk mechanisms, GABA release through pre-synaptic auto-receptors, and granule cell input resistance through post-synaptic receptor activation and inhibition of a K inward-rectifier current. Metabotropic glutamate receptors (mGluRs) control GABA release from Golgi cell terminals and Golgi cell input resistance and autorhythmic firing. This complex set of mechanisms implements both homeostatic and winner-take-all processes, providing the basis for fine-tuning inhibitory neurotransmission and for optimizing signal transfer through the cerebellar cortex.
机译:抑制性突触可以以不同的方式来组织并且可以通过多种机制来调节。由高尔基体细胞在小脑小球中的颗粒细胞上形成的抑制性突触提供了最著名的例子之一。这些突触是GABA能的,并通过两个主要机制(阶段性和补品性)抑制颗粒细胞。前者基于水泡神经递质的释放,后者基于通过溢出和对GABA摄取的调节确定的补品γ-氨基丁酸(GABA)水平的建立。突触后整合的机制已得到相当程度的阐明,并已显示出差异涉及包含α1和α6亚基的GABA-A受体。在这里,回顾了小脑肾小球中GABA能传递的基本机制后,我们研究了抑制作用如何控制在苔藓纤维-颗粒细胞中继处的信号传递。首先,我们考虑水泡释放对信号时间的影响以及补品GABA水平如何控制神经传递增益。然后,我们分析了颗粒层网络中这些抑制机制的整合。有趣的是,事实证明,肾小球抑制只是代谢型受体控制在不同水平的大型综合信号系统中的一个要素。环境GABA激活的GABA-B受体通过突触前的串扰机制调节苔藓纤维中的谷氨酸释放,通过突触前的自体受体释放GABA,并通过突触后的受体激活和K抑制来抑制颗粒细胞输入抵抗内向整流器电流。代谢型谷氨酸受体(mGluRs)控制GABA从高尔基细胞末端释放,高尔基细胞输入抵抗和自律性放电。这套复杂的机制同时实现了稳态和赢家通吃过程,为微调抑制性神经传递和优化通过小脑皮质的信号传递提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号