首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists
【2h】

Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists

机译:生成具有选定结构特性的复杂网络以进行模拟的方法:神经科学家的回顾和指南

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erdös–Rényi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the “scale-free” and “small-world” properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length, and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks.
机译:尽管在一段时间内人们已经认识到解剖脑网络的连接更加复杂,并且可以表现出“规模”,但在计算神经科学网络的许多模拟中,都假设Erdös–Rényi类型为完全同质的随机网络或规则网络。 -free”和“ small-world”属性。我们回顾了用于构造具有给定非均匀统计特性的网络的最著名算法,并提供了用于在软件仿真中重现此类网络的简单伪代码。我们还将回顾一些有用的数学结果和与描述这些网络模型的统计信息相关的近似值,包括度分布,平均路径长度和聚类系数。我们演示了如何将此类结果用作实现的部分验证和确认。最后,我们讨论了一个有时会被忽略的建模选择,它对于模拟网络的属性(网络定向性)至关重要。最著名的网络算法产生无向网络,我们通过强调简单的改编可以代替产生有向网络来强调这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号