首页> 美国卫生研究院文献>Frontiers in Genetics >Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks
【2h】

Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks

机译:Griffin:同步布尔分子网络的符号推理工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as “clause learning” considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: .
机译:布尔网络是生化系统的重要模型,位于抽象光谱的高端。基本上按照相同的方法可以推断出许多布尔基因网络。这种方法首先考虑典型不确定的“调节”图的实验数据。接下来,通过使用生物学约束来缩小搜索空间(例如所需的一组(定点或循环的)吸引子)来推断布尔网络。我们描述了Griffin,这是一种增强此方法的计算机工具。格里芬结合了许多完善的算法,例如Dubrova和Teslenko的算法,用于在同步布尔网络中查找吸引子。此外,对规则的正式定义允许格里芬采用“符号”技术,既可以表示大型网络状态集又可以表示布尔约束。我们观察到,当吸引子集合必须是一个精确集合时,禁止其他吸引子,对此约束进行简单的布尔编码可能是不可行的。由于布尔约束的数量在天文上可能很大,因此即使使用符号方法,此类情况也可能难以解决。为了克服这个问题,我们采用了一种称为“子句学习”的人工智能技术,大大提高了格里芬的可扩展性。如果没有从句学习,则只能解决禁止其他吸引子的玩具示例:在此报告的七个查询中,只有一个被回答。相反,通过子句学习,将回答所有七个查询。我们用拟南芥文献中的三个案例研究来说明格里芬。格里芬(Griffin)的网址是:。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号