首页> 美国卫生研究院文献>Frontiers in Microbiology >Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue
【2h】

Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue

机译:不间断的mRNA衰变:转译介导的核糖体拯救的特殊属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Decoding of aberrant mRNAs leads to unproductive ribosome stalling and sequestration of components of the translation machinery. Bacteria have evolved three seemingly independent pathways to resolve stalled translation complexes. The trans-translation process, orchestrated by the hybrid transfer-messenger RNA (tmRNA) and its essential protein co-factor, small protein B (SmpB), is the principal translation quality control system for rescuing unproductively stalled ribosomes. Two specialized alternative rescue pathways, coordinated by ArfA and ArfB, have been recently discovered. The SmpB-tmRNA mediated trans-translation pathway, in addition to re-mobilizing stalled translation complexes, co-translationally appends a degradation tag to the associated nascent polypeptides, marking them for proteolysis by various cellular proteases. Another unique feature of trans-translation, not shared by the alternative rescue pathways, is the facility to recruit ribonuclease R (RNase R) for targeted degradation of non-stop mRNAs, thus preventing further futile cycles of translation. The distinct C-terminal lysine-rich (K-rich) domain of RNase R is essential for its recruitment to stalled ribosomes. To gain new insights into the structure and function of RNase R, we investigated its global architecture, the spatial arrangement of its distinct domains, and the identities of key functional residues in its unique K-rich domain. Small-angle X-ray scattering models of RNase R reveal a tri-lobed structure with flexible N- and C-terminal domains, and suggest intimate contacts between the K-rich domain and the catalytic core of the enzyme. Alanine-scanning mutagenesis of the K-rich domain, in the region spanning residues 735 and 750, has uncovered the precise amino acid determinants required for the productive engagement of RNase R on tmRNA-rescued ribosomes. Theses analyses demonstrate that alanine substitution of conserved residues E740 and K741result in profound defects, not only in the recruitment of RNase R to rescued ribosomes but also in the targeted decay of non-stop mRNAs. Additionally, an RNase R variant with alanine substitution at residues K749 and K750 exhibits extensive defects in ribosome enrichment and non-stop mRNA decay. In contrast, alanine substitution of additional conserved residues in this region has no effect on the known functions of RNase R. In vitro RNA degradation assays demonstrate that the consequential substitutions (RNase RE740A/K741A and RNase RK749A/K750A) do not affect the ability of the enzyme to degrade structured RNAs, indicating that the observed defect is specific to the trans-translation related activities of RNase R. Taken together, these findings shed new light on the global architecture of RNase R and provide new details of how this versatile RNase effectuates non-stop mRNA decay on tmRNA-rescued ribosomes.
机译:异常mRNA的解码会导致无用的核糖体停滞和螯合翻译机制的组成部分。细菌已经进化出三种看似独立的途径来解决停滞的翻译复合体。由杂种转移信使RNA(tmRNA)及其必需的蛋白质辅助因子小蛋白B(SmpB)精心安排的转译过程是挽救生产停滞的核糖体的主要翻译质量控制系统。最近发现了由ArfA和ArfB协调的两条专门的替代救援途径。 SmpB-tmRNA介导的反式翻译途径,除了重新动员停滞的翻译复合物外,还可以将降解标签共翻译附加到相关的新生多肽上,从而标记它们被各种细胞蛋白酶进行蛋白水解。反转录翻译的另一个独特功能(不是其他救援途径所共有)是募集核糖核酸酶R(RNase R)来靶向降解非终止mRNA的设施,从而防止了进一步的无效翻译周期。 RNase R的独特的C端富含赖氨酸(富含K)域对于将其募集到停滞的核糖体至关重要。为了获得有关RNase R的结构和功能的新见解,我们研究了其全局架构,其不同域的空间排列以及其独特的富含K的域中关键功能残基的身份。 RNase R的小角X射线散射模型揭示了具有柔性N端和C端结构域的三叶结构,并暗示了富K结构域和酶催化核心之间的紧密接触。在跨越残基735和750的区域中,富K结构域的丙氨酸扫描诱变发现了RNase R与tmRNA拯救的核糖体有效结合所需的精确氨基酸决定簇。这些分析表明,保守残基E740和K741的丙氨酸取代不仅导致RNase R募集到被拯救的核糖体上,而且导致了不停mRNA的定向衰变,从而导致了严重的缺陷。此外,在残基K749和K750上具有丙氨酸取代的RNase R变异体在核糖体富集和不间断的mRNA降解中表现出广泛的缺陷。相比之下,该区域中其他保守残基的丙氨酸取代对RNase R的已知功能没有影响。体外RNA降解试验表明,相应的取代(RNase R E740A / K741A 和RNase R < sup> K749A / K750A )不会影响该酶降解结构化RNA的能力,这表明观察到的缺陷是特定于RNase R的转译相关活性的。 RNase R的全球架构,并提供这种多功能RNase如何在tmRNA拯救的核糖体上实现不停mRNA衰变的新细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号