首页> 美国卫生研究院文献>Frontiers in Neuroanatomy >Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity
【2h】

Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity

机译:通过结构可塑性自动生成大型神经网络模型的连通性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.
机译:在过去的十年中,随着新的高性能计算技术的出现,能够再现大脑行为和结构的大规模神经网络的仿真终于成为神经科学可以实现的目标。由于神经元之间的突触连接的数量和生物网络的复杂性,大多数当代模型具有手动定义的或静态的连接性。但是,可以预期的是,对局部和大脑不同区域之间的神经元之间链接的动态生成和删除进行建模,对于揭示与学习,记忆和康复相关的重要机制至关重要。此外,对于许多可能被建模的神经回路,活动数据比连接性数据更容易,更可靠。因此,使网络能够根据指定的活动目标进行自我连接的框架在指定连接性数据不完整或具有较大误差容限的网络模型时具有重要价值。为了解决这些问题,在本工作中,我们介绍了神经网络模拟器NEST中结构可塑性模型的实现。在此模型中,突触由两部分组成,突触前和突触后元件。在执行模拟过程中,将按照本地稳态规则创建和删除突触,直到在网络中达到平均电活动水平为止。我们评估实施的可伸缩性,以评估其在大规模生成网络的自生成中的潜在用途。我们展示并讨论了使用新框架在两个微微的复杂的皮质微电路模型(包括8个种群和4个层)上的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号