首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Quadcopter Flight Control Using a Non-invasive Multi-Modal Brain Computer Interface
【2h】

Quadcopter Flight Control Using a Non-invasive Multi-Modal Brain Computer Interface

机译:使用非侵入性多模式脑计算机接口的四轴飞行器控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain-Computer Interfaces (BCIs) translate neuronal information into commands to control external software or hardware, which can improve the quality of life for both healthy and disabled individuals. Here, a multi-modal BCI which combines motor imagery (MI) and steady-state visual evoked potential (SSVEP) is proposed to achieve stable control of a quadcopter in three-dimensional physical space. The complete information common spatial pattern (CICSP) method is used to extract two MI features to control the quadcopter to fly left-forward and right-forward, and canonical correlation analysis (CCA) is employed to perform the SSVEP classification for rise and fall. Eye blinking is designed to switch these two modes while hovering. Real-time feedback is provided to subjects by a global camera. Two flight tasks were conducted in physical space in order to certify the reliability of the BCI system. Subjects were asked to control the quadcopter to fly forward along the zig-zag pattern to pass through a gate in the relatively simple task. For the other complex task, the quadcopter was controlled to pass through two gates successively according to an S-shaped route. The performance of the BCI system is quantified using suitable metrics and subjects are able to acquire 86.5% accuracy for the complicated flight task. It is demonstrated that the multi-modal BCI has the ability to increase the accuracy rate, reduce the task burden, and improve the performance of the BCI system in the real world.
机译:脑机接口(BCI)将神经元信息转换为命令以控制外部软件或硬件,从而可以改善健康和残障人士的生活质量。在此,提出了一种结合了运动图像(MI)和稳态视觉诱发电位(SSVEP)的多模式BCI,以实现对四旋翼飞机在三维物理空间中的稳定控制。完整信息通用空间模式(CICSP)方法用于提取两个MI特征,以控制四轴飞行器向左和向右飞行,并使用规范相关分析(CCA)对上升和​​下降进行SSVEP分类。眨眼设计为在悬停时切换这两种模式。全局相机向对象提供实时反馈。为了证明BCI系统的可靠性,在物理空间中进行了两次飞行任务。在相对简单的任务中,要求受试者控制四旋翼飞行器沿着锯齿形飞行以通过闸门。对于另一项复杂任务,控制四轴飞行器按照S形路线连续通过两个登机口。 BCI系统的性能使用适当的度量标准进行了量化,受试者能够针对复杂的飞行任务获得86.5%的准确度。实践证明,多模式BCI具有提高准确率,减轻任务负担,提高BCI系统性能的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号