首页> 外文期刊>Journal of neural engineering >Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
【24h】

Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

机译:使用基于非侵入性运动图像的脑机接口在三维空间中进行四轴飞行器控制

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained-to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s~(-1). Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplishing complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.
机译:目的。在人机适应的平衡点,人们发现了功能最佳的脑机接口(BCI)。在这项研究中,我们报告了BCI在人类受试者中使用无创头皮脑电图(EEG)控制三维(3D)物理空间中的机器人四轴飞行器的新型实验。然后,我们使用适用于异步BCI的指标来量化该系统的性能。最后,我们检查了与2D虚拟光标任务相比,真实世界设备的操作对对象控制的影响。方法。培训了五名人类受试者,以调节其感觉运动节律,以控制在3D物理空间中导航的AR无人机。视觉反馈是通过无人机机身上的前置摄像头提供的。主要结果。在以0.69 m s〜(-1)的平均直线速度行驶时,个体受试者能够准确地获取多达90.5%的所有有效目标。意义。自由探索和与我们周围的世界互动是在神经退行性疾病中丧失的自主性的重要组成部分。脑机接口是旨在恢复或增强用户通过计算机和仅使用思想与环境交互的能力的系统。我们首次展示了使用无创头皮记录的人类脑电图在3D物理空间中控制飞行机器人的能力。我们的工作表明了基于无创EEG的BCI系统在3D物理空间中完成复杂控制的潜力。本研究可以作为使用远程呈现机器人技术研究物理环境中多维无创BCI控制的框架。

著录项

  • 来源
    《Journal of neural engineering》 |2013年第4期|046003.1-046003.15|共15页
  • 作者单位

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA;

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA;

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA;

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA;

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA;

    Department of Biomedical Engineering, University of Minnesota, 7-105 NHH, 312 Church Street, SE, Minneapolis, MN 55455, USA,Institute for Engineering in Medicine, University of Minnesota, 725 Mayo, 420 Delaware Ave SE, Minneapolis, MN 55455, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号