首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation
【2h】

Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation

机译:基于层次信息的聚类用于基于连通性的皮质分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area (“the functional fingerprint”) is closely related to its anatomical connections (“the connectional fingerprint”) and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas.
机译:编译连接性数据的最有前途的途径之一源于这样一个概念,即各个大脑区域都维护着各个连接性配置文件。皮质区域的功能库(“功能指纹”)与其解剖连接(“连接指纹”)密切相关,因此,隔离的皮质区域可能具有高度连贯的连通性模式。扩散束摄影术可用于识别这种皮层区域之间的边界。每个皮层区域都是基于唯一的概率性皮层图定义的,这种皮层图代表一组皮层图,从而形成皮层区域。基本的方法称为基于连通性的皮层分割,需要对相似的扩散束图进行聚类或分组。尽管该技术在产生解剖学上有意义的结果方面相对成功,但是在基于连接的分割的背景下,现有的聚类技术通常取决于几个非平凡的假设。在本文中,我们将无监督的基于分层信息的框架具体化为概率概率图的聚类,从而避免了先前方法提供的许多缺点。下额回与前中央回的皮质区分开证明了所提出方法的概念证明:自动区分开揭示了与细胞结构图和包括基于连通性的区分开在内的先前研究一致的皮质亚基。通过揭示区分初级和运动前区域以及与前额叶区域相关的区域的较粗略的皮质结构,可以进一步了解皮质亚基的分层模块化体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号