首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion
【2h】

Closed-loop Robots Driven by Short-Term Synaptic Plasticity: Emergent Explorative vs. Limit-Cycle Locomotion

机译:短期突触可塑性驱动的闭环机器人:新兴的探索性与极限循环运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.
机译:我们检查的假说,短期的突触可塑性(STSP)可能会产生自组织的运动模式。我们在LPZRobots模拟软件包中模拟了球形自治机器人,其中包含三个沿正交内部杆移动的重物。砝码的位置由单个神经元控制,该单个神经元从传感器接收兴奋性输入,测量其实际位置,而其他两个神经元则接收抑制输入。遵循生理启发性的STSP规则,抑制性连接是暂时性的。我们发现,通过STSP,机器人和环境(闭环配置)的相互作用会生成各种各样的运动模式,包括各种向前弯曲和圆周运动以及混沌轨迹。相对于与障碍物的其他交互作用,观察到的运动是可靠的。在混乱阶段,机器人似乎正在积极探索其环境。我们相信,我们的结果构成了证明概念的证据,如STSP所述,瞬时突触可塑性对于产生运动命令和出现复杂的运动模式可能也很重要,并且还可以无缝地适应意外的环境反馈。我们观察到自发的和碰撞引起的模式切换,另外发现,运动可能遵循瞬态极限循环,否则该循环是不稳定的。规则的运动对应于感觉运动回路中的稳定极限循环,其又可以通过任意传播角度来表征。在我们的分析中,这种退化是在选定参数设置下观察到的混沌漂移的驱动因素之一,这是由传播角度的平滑扩散引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号