首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Passive Motion Paradigm: An Alternative to Optimal Control
【2h】

Passive Motion Paradigm: An Alternative to Optimal Control

机译:被动运动范式:最优控制的替代方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.
机译:近年来,最佳控制理论(OCT)成为研究运动和运动认知的神经控制的两个主要研究领域的主要方法:行为神经科学和类人机器人。在这两种情况下,都需要解决一些一般性问题,例如“自由度(DoF)问题”,生产,观察,推理和学习“动作”的共同核心。直接来自控制系统的工程设计技术的OCT将任务目标量化为“成本函数”,并使用最佳控制的复杂形式化工具来获得所需的行为(和预测)。我们提出了另一种“更软”的被动运动范例(PMP),我们认为它更接近于动作的生物力学和控制论。基本思想是,动作(公开和秘密)是内部模拟过程的结果,该过程通过目标和特定任务约束引起的力场的吸引子动力学“使”人体模式“动画”。这种内部仿真为大脑提供了一种在“运行时”将电机冗余与面向任务的约束动态链接的方法,从而解决了“ DoF问题”,而无需进行明确的运动学反转和成本函数计算。我们认为,这种计算机制的功能不仅限于在执行动作过程中调整电机输出,而且还向自身提供有关“潜在动作”的可行性,结果,理解和含义的信息。从这个意义上讲,考虑到神经科学(运动图像,隐蔽动作的模拟理论,镜像神经元系统)和具体化的机器人技术的最新发展,PMP提供了一种新颖的框架来理解运动认知,这超出了OCT提供的工程控制范式。因此,本文同时是对PMP理论基础(作为一种计算理论)的回顾,以及有关如何开发它以设计更好的认知体系的观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号