首页> 美国卫生研究院文献>Frontiers in Neuroscience >A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain
【2h】

A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain

机译:人脑锁相经颅电刺激的快速脑电预测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A growing body of research suggests that non-invasive electrical brain stimulation can more effectively modulate neural activity when phase-locked to the underlying brain rhythms. Transcranial alternating current stimulation (tACS) can potentially stimulate the brain in-phase to its natural oscillations as recorded by electroencephalography (EEG), but matching these oscillations is a challenging problem due to the complex and time-varying nature of the EEG signals. Here we address this challenge by developing and testing a novel approach intended to deliver tACS phase-locked to the activity of the underlying brain region in real-time. This novel approach extracts phase and frequency from a segment of EEG, then forecasts the signal to control the stimulation. A careful tuning of the EEG segment length and prediction horizon is required and has been investigated here for different EEG frequency bands. The algorithm was tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in terms of phase-locking values across a variety of EEG frequency bands. Phase-locking performance was found to be consistent across individuals and recording locations. With current parameters, the algorithm performs best when tracking oscillations in the alpha band (8–13 Hz), with a phase-locking value of 0.77 ± 0.08. Performance was maximized when the frequency band of interest had a dominant frequency that was stable over time. The algorithm performs faster, and provides better phase-locked stimulation, compared to other recently published algorithms devised for this purpose. The algorithm is suitable for use in future studies of phase-locked tACS in preclinical and clinical applications.
机译:越来越多的研究表明,当非侵入性电刺激与相位相关的大脑节律锁相时,可以更有效地调节神经活动。经颅交流电刺激(tACS)可以通过脑电图(EEG)记录,同相地刺激大脑使其自然振荡,但是由于EEG信号的复杂性和时变性,匹配这些振荡是一个具有挑战性的问题。在这里,我们通过开发和测试一种新颖的方法来应对这一挑战,该方法旨在实时将tACS锁相传递至底层大脑区域的活动。这种新颖的方法从一段脑电图中提取相位和频率,然后预测信号以控制刺激。需要仔细调整脑电图段的长度和预测范围,并已针对不同的脑电图频带进行了研究。该算法在来自5位健康志愿者的EEG数据上进行了测试。根据跨多个EEG频带的锁相值对算法性能进行了量化。发现锁相性能在个人和录音位置之间是一致的。使用当前参数,该算法在跟踪α波段(8–13 Hz)中的振荡(锁相值为0.77±0.08)时表现最佳。当感兴趣的频段具有随时间推移稳定的主导频率时,性能将达到最佳。与为此目的设计的其他最近发布的算法相比,该算法执行速度更快,并且提供了更好的锁相刺激。该算法适用于临床前和临床应用中锁相tACS的未来研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号