首页> 美国卫生研究院文献>Frontiers in Neuroscience >How Different EEG References Influence Sensor Level Functional Connectivity Graphs
【2h】

How Different EEG References Influence Sensor Level Functional Connectivity Graphs

机译:不同的EEG参考如何影响传感器级别的功能连接图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Highlights: class="unordered" style="list-style-type:disc">Hamming Distance is applied to distinguish the difference of functional connectivity networkThe orientations of sources are testified to influence the scalp Functional Connectivity Graph (FCG) from different references significantlyREST, the reference electrode standardization technique, is proved to have an overall stable and excellent performance in variable situations.The choice of an electroencephalograph (EEG) reference is a practical issue for the study of brain functional connectivity. To study how EEG reference influence functional connectivity estimation (FCE), this study compares the differences of FCE resulting from the different references such as REST (the reference electrode standardization technique), average reference (AR), linked mastoids (LM), and left mastoid references (LR). Simulations involve two parts. One is based on 300 dipolar pairs, which are located on the superficial cortex with a radial source direction. The other part is based on 20 dipolar pairs. In each pair, the dipoles have various orientation combinations. The relative error (RE) and Hamming distance (HD) between functional connectivity matrices of ideal recordings and that of recordings obtained with different references, are metrics to compare the differences of the scalp functional connectivity graph (FCG) derived from those two kinds of recordings. Lower RE and HD values imply more similarity between the two FCGs. Using the ideal recording (IR) as a standard, the results show that AR, LM and LR perform well only in specific conditions, i.e., AR performs stable when there is no upward component in sources' orientation. LR achieves desirable results when the sources' locations are away from left ear. LM achieves an indistinct difference with IR, i.e., when the distribution of source locations is symmetric along the line linking the two ears. However, REST not only achieves excellent performance for superficial and radial dipolar sources, but also achieves a stable and robust performance with variable source locations and orientations. Benefitting from the stable and robust performance of REST vs. other reference methods, REST might best recover the real FCG of EEG. Thus, REST based FCG may be a good candidate to compare the FCG of EEG based on different references from different labs.
机译:>亮点: class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior = unordered prefix-word = mark-type = disc max-label- size = 0-> 使用汉明距离来区分功能连接网络的差异 已证明来源的方向会显着影响来自不同参考的头皮功能连接图(FCG) REST是参比电极标准化技术,在各种情况下都具有整体稳定和出色的性能。 脑电图(EEG)参比的选择是解决该问题的一个实际问题。脑功能连通性研究。为了研究EEG参考如何影响功能连通性估计(FCE),本研究比较了不同参考(例如REST(参考电极标准化技术),平均参考(AR),链接乳突(LM)和左参考)产生的FCE的差异。乳突参考(LR)。模拟涉及两个部分。一个是基于300个偶极对,它们位于径向皮质的浅表皮层上。另一部分基于20个偶极对。在每一对中,偶极具有各种取向组合。理想记录的功能连接矩阵与使用不同参考获得的记录的功能连接矩阵之间的相对误差(RE)和汉明距离(HD)是比较从这两种记录得出的头皮功能连接图(FCG)差异的指标。较低的RE和HD值意味着两个FCG之间的相似性更高。使用理想记录(IR)作为标准,结果表明AR,LM和LR仅在特定条件下表现良好,即,在源方向上没有向上分量时,AR表现稳定。当光源的位置远离左耳时,LR可获得理想的效果。 LM与IR的区别不明显,即当源位置的分布沿连接两只耳朵的线对称时。但是,REST不仅在表面和径向偶极辐射源上都具有出色的性能,而且在变化的辐射源位置和方向下也能获得稳定而强大的性能。受益于REST与其他参考方法相比稳定,强大的性能,REST可能会最好地恢复EEG的真实FCG。因此,基于REST的FCG可能是根据来自不同实验室的不同参考来比较EEG的FCG的不错的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号