首页> 美国卫生研究院文献>Frontiers in Oncology >Evaluation of Radiomics to Predict the Accuracy of Markerless Motion Tracking of Lung Tumors: A Preliminary Study
【2h】

Evaluation of Radiomics to Predict the Accuracy of Markerless Motion Tracking of Lung Tumors: A Preliminary Study

机译:评估放射性组学以预测肺肿瘤无标记运动追踪的准确性的初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Template-based matching algorithms are currently being considered for markerless motion tracking of lung tumors. These algorithms use tumor templates derived from the planning CT scan, and track the motion of the tumor on single energy fluoroscopic images obtained at the time of treatment. In cases where bone may obstruct the view of the tumor, dual energy fluoroscopy may be used to enhance soft tissue contrast. The goal of this study is to predict which tumors will have a high degree of accuracy for markerless motion tracking based on radiomic features obtained from the planning CT scan, using peak-to-sidelobe ratio (PSR) as a surrogate of tracking accuracy. In this study, CT imaging data of 8 lung cancer patients were obtained and analyzed through the open source IBEX program to generate 2,287 radiomic features. Agglomerative hierarchical clustering was used to narrow down these features into 145 clusters comprised of the highest correlation to PSR. The features among the clusters with the least inter-correlation were then chosen to limit redundancy in the data. The results of this study demonstrated a number of radiomic features that are positively correlated to PSR. The features with the highest degree of correlation included complexity, orientation and range. This approach may be used to determine patients for whom markerless motion tracking would be beneficial.
机译:当前正在考虑基于模板的匹配算法来进行肺肿瘤的无标记运动跟踪。这些算法使用源自计划CT扫描的肿瘤模板,并在治疗时获得的单能荧光透视图像上跟踪肿瘤的运动。如果骨骼可能挡住了肿瘤的视线,则可以使用双能荧光透视技术来增强软组织的对比度。这项研究的目的是基于峰对旁瓣之比(PSR)的替代,基于从计划CT扫描获得的放射学特征,预测哪些肿瘤对无标记运动追踪具有较高的准确性。在这项研究中,获得了8例肺癌患者的CT影像数据,并通过开源IBEX程序进行了分析,以生成2287幅放射学特征。使用聚集层次聚类将这些特征缩小为145个与PSR相关性最高的聚类。然后选择具有最小互相关性的聚类中的特征以限制数据中的冗余。这项研究的结果表明,许多放射学特征与PSR正相关。相关程度最高的功能包括复杂性,方向和范围。该方法可用于确定无标记运动跟踪对其有益的患者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号