首页> 美国卫生研究院文献>Frontiers in Physiology >I.4 Screening Experimental Designs for Quantitative Trait Loci Association Mapping Genotype-by Environment Interaction and Other Investigations
【2h】

I.4 Screening Experimental Designs for Quantitative Trait Loci Association Mapping Genotype-by Environment Interaction and Other Investigations

机译:I.4筛选性状位点关联图谱基因型-环境相互作用的实验设计及其他研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crop breeding programs using conventional approaches, as well as new biotechnological tools, rely heavily on data resulting from the evaluation of genotypes in different environmental conditions (agronomic practices, locations, and years). Statistical methods used for designing field and laboratory trials and for analyzing the data originating from those trials need to be accurate and efficient. The statistical analysis of multi-environment trails (MET) is useful for assessing genotype × environment interaction (GEI), mapping quantitative trait loci (QTLs), and studying QTL × environment interaction (QEI). Large populations are required for scientific study of QEI, and for determining the association between molecular markers and quantitative trait variability. Therefore, appropriate control of local variability through efficient experimental design is of key importance. In this chapter we present and explain several classes of augmented designs useful for achieving control of variability and assessing genotype effects in a practical and efficient manner. A popular procedure for unreplicated designs is the one known as “systematically spaced checks.” Augmented designs contain “c” check or standard treatments replicated “r” times, and “n” new treatments or genotypes included once (usually) in the experiment.
机译:使用常规方法以及新的生物技术工具的作物育种计划在很大程度上依赖于在不同环境条件(农艺实践,位置和年份)中对基因型进行评估所得出的数据。用于设计现场和实验室试验以及用于分析来自这些试验的数据的统计方法需要准确而有效。多环境踪迹(MET)的统计分析可用于评估基因型××环境相互作用(GEI),定位数量性状基因座(QTL)和研究QTL××环境相互作用(QEI)。对QEI进行科学研究以及确定分子标记与定量性状变异之间的关联需要大量的人口。因此,通过有效的实验设计适当控制局部变异性至关重要。在本章中,我们介绍并解释了几类增强设计,它们可用于以实用有效的方式实现对可变性的控制和评估基因型效应。对于不重复设计,一种流行的程序是一种称为“系统间隔检查”的程序。增强设计包含重复“ r”次的“ c”检查或标准治疗,以及实验中一次(通常)包含“ n”的新治疗或基因型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号