首页> 美国卫生研究院文献>Genetics >Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics
【2h】

Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics

机译:使用摘要统计在贝叶斯框架中合并用于精细映射因果变量的功能注释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities.
机译:已显示功能注释可改善全基因组关联研究中的发现能力和精细映射的准确性。但是,结合大量现有注释的最佳策略仍不清楚。在这项研究中,我们提出了一种贝叶斯框架,以系统的方式结合功能注释。我们计算最大后验解,并使用交叉验证找到最佳惩罚参数。通过将我们以前的精细映射方法CAVIARBF扩展到此框架,我们仅需要摘要统计信息作为输入。我们还使用汇总统计数据对数量性状进行了贝叶斯因子的精确计算,这在用感兴趣的变体解释很大比例的性状方差时是必需的,例如在精细映射表达定量性状位点(eQTL)中。我们将提出的方法与使用不同策略组合注释的PAINTOR进行了比较。仿真结果表明,在比较不同策略和方法中,该方法在识别因果变量方面达到了最佳精度。我们还发现,对于来自大型注释池的中等效果的注释,单独筛选注释,然后组合顶部注释可能会产生过于乐观的结果。我们将这些方法应用于两个真实的数据集:脂质性状的荟萃分析结果和正常前列腺组织的cis-eQTL研究。对于eQTL数据,合并注释会显着增加具有高概率的潜在因果变体的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号