首页> 美国卫生研究院文献>Genetics >Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data
【2h】

Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data

机译:从DNA单倍型之间的公制距离推断的分子变异分析:在人类线粒体DNA限制性数据中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as φ-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and φ-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.
机译:我们在这里提出一个框架,用于研究单个物种内的分子变异。有关DNA单倍型差异的信息被纳入方差格式的分析,该方差格式源自所有成对单倍型之间的平方距离矩阵。这种对分子方差(AMOVA)的分析可得出方差分量和F统计量类似物(在此称为φ统计量)的估计值,反映了不同层次细分中单倍型多样性的相关性。该方法足够灵活,可以适应几种不同的输入矩阵,分别对应于不同类型的分子数据以及不同类型的进化假设,而无需修改分析的基本结构。使用置换方法测试了方差成分和φ统计量的显着性,消除了方差分析的常规假设,但不适用于分子数据。 AMOVA在人类线粒体DNA单倍型数据中的应用表明,当将某些单倍型之间的分子差异测量引入分析时,可以更好地解决群体细分。然而,在种内水平上,通过了解单倍型之间确切的系统发育关系或通过将限制性位点变化非线性转化为核苷酸多样性所提供的附加信息不会显着改变推断的种群遗传结构。蒙特卡洛研究表明,现场取样不会从根本上影响分子变异成分的重要性。 AMOVA处理很容易在几个不同的方向上扩展,它构成了用于分子数据统计分析的连贯且灵活的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号