首页> 美国卫生研究院文献>Genome Research >Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks
【2h】

Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks

机译:识别支持TAD结构和特定谱系调控网络的顺式调控元件簇

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellular identity relies on cell-type–specific gene expression controlled at the transcriptional level by cis-regulatory elements (CREs). CREs are unevenly distributed across the genome, giving rise to individual CREs and clusters of CREs (COREs). Technical and biological features hinder CORE identification. We addressed these issues by developing an unsupervised machine learning approach termed clustering of genomic regions analysis method (CREAM). CREAM automates CORE detection from chromatin accessibility profiles that are enriched in CREs strongly bound by master transcription regulators, proximal to highly expressed and essential genes, and discriminating cell identity. Although COREs share similarities with super-enhancers, we highlight differences in terms of the genomic distribution and structure of these cis-regulatory units. We further show the enhanced value of COREs over super-enhancers to identify master transcription regulators, highly expressed and essential genes defining cell identity. COREs enrich at topologically associated domain (TAD) boundaries. They are also preferentially bound by the chromatin looping factors CTCF and cohesin, in contrast to super-enhancers, forming clusters of CTCF and cohesin binding regions and defining homotypic clusters of transcription regulator binding regions (HCTs). Finally, we show the clinical utility of CREAM to identify COREs across chromatin accessibility profiles to stratify more than 400 tumor samples according to their cancer type and to delineate cancer type–specific active biological pathways. Collectively, our results support the utility of CREAM to delineate COREs underlying, with greater accuracy than individual CREs or super-enhancers, the cell-type–specific biological underpinning across a wide range of normal and cancer cell types.
机译:细胞身份依赖于细胞类型特异性基因表达,其在转录水平上受顺式调控元件(CRE)控制。 CRE在整个基因组中分布不均,从而形成单个CRE和CRE(CORE)簇。技术和生物学特征阻碍了核心识别。我们通过开发一种称为基因组区域分析方法(CREAM)聚类的无监督机器学习方法来解决这些问题。 CREAM可从染色质可及性谱中自动进行CORE检测,而染色质可访问性谱中富含CRE,这些CRE与主转录调节剂紧密结合,靠近高度表达的必需基因,并能区分细胞。尽管CORE与超级增强剂具有相似之处,但我们强调了这些顺式调节单元的基因组分布和结构方面的差异。我们进一步展示了COREs在超级增强子上的价值,以增强识别主转录调节因子,高表达和定义细胞身份的必需基因的能力。 CORE在拓扑关联域(TAD)边界处富集。与超级增强子相反,它们还优先受染色质环化因子CTCF和黏附素结合,形成CTCF和黏附素结合区簇,并定义转录调节因子结合区(HCT)的同型簇。最后,我们展示了CREAM在整个染色质可及性分布图上识别CORE的临床效用,可根据其癌症类型对400多个肿瘤样品进行分层,并描述特定于癌症类型的活性生物途径。总体而言,我们的研究结果支持CREAM用来描绘比各种CRE或超级增强剂更精确的潜在CORE的工具,这些CORE可以在多种正常细胞和癌细胞类型中作为特定于细胞类型的生物学基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号