首页> 美国卫生研究院文献>Gut Microbes >Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut
【2h】

Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut

机译:哺乳动物肠道中宿主微生物代谢共生的系统级表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human gut microbiota consists of ten times more microorganisms than there are cells in our body, processes otherwise indigestible nutrients, and produces important energy precursors, essential amino acids, and vitamins. In this study, we assembled and validated a genome-scale metabolic reconstruction of Bacteroides thetaiotaomicron (iAH991), a prominent representative of the human gut microbiota, consisting of 1488 reactions, 1152 metabolites, and 991 genes. To create a comprehensive metabolic model of host-microbe interactions, we integrated iAH991 with a previously published mouse metabolic reconstruction, which was extended for intestinal transport and absorption reactions. The two metabolic models were linked through a joint compartment, the lumen, allowing metabolite exchange and providing a route for simulating different dietary regimes. The resulting model consists of 7239 reactions, 5164 metabolites, and 2769 genes. We simultaneously modeled growth of mouse and B. thetaiotaomicron on five different diets varying in fat, carbohydrate, and protein content. The integrated model captured mutually beneficial cross-feeding as well as competitive interactions. Furthermore, we identified metabolites that were exchanged between the two organisms, which were compared with published metabolomics data. This analysis resulted for the first time in a comprehensive description of the co-metabolism between a host and its commensal microbe. We also demonstrate in silico that the presence of B. thetaiotaomicron could rescue the growth phenotype of the host with an otherwise lethal enzymopathy and vice versa. This systems approach represents a powerful tool for modeling metabolic interactions between a gut microbe and its host in health and disease.
机译:人体肠道菌群由微生物组成,比我们体内的细胞多十倍,可以处理其他无法消化的营养,并产生重要的能量前体,必需氨基酸和维生素。在这项研究中,我们组装并验证了拟杆菌(iAH991)的基因组规模代谢重建,该细菌是人类肠道菌群的重要代表,由1488个反应,1152个代谢物和991个基因组成。为了创建宿主-微生物相互作用的综合代谢模型,我们将iAH991与先前发表的小鼠代谢重建相结合,将其扩展用于肠道运输和吸收反应。这两种代谢模型通过关节腔管腔相连,可以进行代谢物交换,并提供了模拟不同饮食方案的途径。生成的模型包含7239个反应,5164个代谢产物和2769个基因。我们同时在脂肪,碳水化合物和蛋白质含量不同的五种不同饮食上对小鼠和B. thetaiotaomicron的生长进行了建模。集成模型捕获了互惠互利的交叉馈送以及竞争性互动。此外,我们鉴定了两种生物之间交换的代谢物,并与已发表的代谢组学数据进行了比较。该分析首次全面描述了宿主与其共生微生物之间的共代谢。我们还在计算机上证明了B. thetaiotaomicron的存在可以挽救宿主的生长表型,否则会导致致命的酶病,反之亦然。该系统方法代表了一种强大的工具,可用于在健康和疾病中模拟肠道微生物与其宿主之间的代谢相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号