首页> 美国卫生研究院文献>Materials >Influence of a Thiolate Chemical Layer on GaAs (100) Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods
【2h】

Influence of a Thiolate Chemical Layer on GaAs (100) Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods

机译:硫醇盐化学层对GaAs(100)生物功能化的影响:耦合原子力显微镜和质谱法的原始方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs) is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH2)11OH)) or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH2)15CO2H)) end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA) protein layer on the GaAs (100) surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM) analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with in situ MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10%) is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.
机译:广泛用于微电子和光电子;砷化镓(GaAs)是III-V晶体,具有微系统和生物传感器应用中的几种令人感兴趣的特性。在这些当中;它的压电特性以及直接对裸露的表面进行生物功能化的能力,为将高灵敏度的传感器与特定的生物界面结合提供了机会。这是生物传感器的两个基本部分。优化生物识别部分;必须控制蛋白质的覆盖率和GaAs表面上蛋白质层的结合亲和力。本文我们研究了由具有不同链长的硫醇盐分子组成的特定化学界面的潜力;具有羟基(MUDO;对于11-巯基-1-十一烷醇(HS(CH2)11OH))或羧基(MHDA;对于巯基十六烷酸(HS(CH2)15CO2H))端基;重建GaAs(100)表面上的致密均匀的白蛋白(鼠血清白蛋白; RSA)蛋白层。通过原子力显微镜(AFM)分析来表征RSA蛋白质和羧基端基之间的蛋白质单层形成和共价结合。形貌特征;蛋白质层的厚度和稳定性使我们提出了10%MHDA / MUDO界面作为有效移植蛋白质的最佳化学层。该分析与原位MALDI-TOF质谱测量相结合。这证明在10%MHDA / MUDO界面上存在致密且均匀的嫁接蛋白层。我们在这项研究中表明,要在GaAs上获得均质和致密的蛋白质覆盖,需要一定数量的羧基对接位点(10%)。这种蛋白质生物界面对于确保高度特异性和灵敏的生物传感器至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号