首页> 美国卫生研究院文献>Comparative and Functional Genomics >Empirical Bayes Model Comparisons for Differential Methylation Analysis
【2h】

Empirical Bayes Model Comparisons for Differential Methylation Analysis

机译:差异甲基化分析的经验贝叶斯模型比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of empirical Bayes models (each with different statistical distribution assumptions) have now been developed to analyze differential DNA methylation using high-density oligonucleotide tiling arrays. However, it remains unclear which model performs best. For example, for analysis of differentially methylated regions for conservative and functional sequence characteristics (e.g., enrichment of transcription factor-binding sites (TFBSs)), the sensitivity of such analyses, using various empirical Bayes models, remains unclear. In this paper, five empirical Bayes models were constructed, based on either a gamma distribution or a log-normal distribution, for the identification of differential methylated loci and their cell division—(1, 3, and 5) and drug-treatment-(cisplatin) dependent methylation patterns. While differential methylation patterns generated by log-normal models were enriched with numerous TFBSs, we observed almost no TFBS-enriched sequences using gamma assumption models. Statistical and biological results suggest log-normal, rather than gamma, empirical Bayes model distribution to be a highly accurate and precise method for differential methylation microarray analysis. In addition, we presented one of the log-normal models for differential methylation analysis and tested its reproducibility by simulation study. We believe this research to be the first extensive comparison of statistical modeling for the analysis of differential DNA methylation, an important biological phenomenon that precisely regulates gene transcription.
机译:现在已经开发出许多经验贝叶斯模型(每个模型都有不同的统计分布假设),以使用高密度寡核苷酸切片阵列分析差异性的DNA甲基化。但是,尚不清楚哪种模型效果最好。例如,对于保守和功能序列特征(例如,转录因子结合位点(TFBS)的富集)的差异甲基化区域的分析,使用各种经验贝叶斯模型的此类分析的敏感性仍然不清楚。本文基于伽马分布或对数正态分布,构建了五个经验贝叶斯模型,用于鉴定差异甲基化基因座及其细胞分裂(1、3和5)和药物治疗-(顺铂)依赖性甲基化模式。尽管对数正态模型生成的差异甲基化模式富含大量TFBS,但使用伽马假设模型时,我们几乎观察不到TFBS富集的序列。统计和生物学结果表明,对数正态而非贝叶斯经验贝叶斯模型分布是差异甲基化微阵列分析的高度准确和精确的方法。此外,我们提出了一种用于差异甲基化分析的对数正态模型,并通过模拟研究测试了其可重复性。我们相信这项研究将是统计模型首次广泛比较,用于分析差异DNA甲基化,这是一种精确调节基因转录的重要生物学现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号