您现在的位置:首页>美国卫生研究院文献>Cell Division

期刊信息

  • 期刊名称:

    -

  • 刊频:
  • NLM标题: Cell Div
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<3/13>
249条结果
  • 机译 哺乳动物胞质分裂中的线粒体-细胞骨架关联
    摘要:BackgroundThe role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown.
  • 机译 T-box转录因子TBX3通过直接抑制p21WAF1细胞周期蛋白依赖性激酶抑制剂来驱动增殖
    摘要:BackgroundTBX3, a member of the T-box family of transcription factors, is essential in development and has emerged as an important player in the oncogenic process. TBX3 is overexpressed in several cancers and has been shown to contribute directly to tumour formation, migration and invasion. However, little is known about the molecular basis for its role in development and oncogenesis because there is a paucity of information regarding its target genes. The cyclin-dependent kinase inhibitor p21WAF1 plays a pivotal role in a myriad of processes including cell cycle arrest, senescence and apoptosis and here we provide a detailed mechanism to show that it is a direct and biologically relevant target of TBX3.
  • 机译 Rpl22是酿酒酵母中IME1 mRNA翻译和减数分裂诱导所必需的
    摘要:BackgroundThe transition from mitotic cell division to meiotic development in S. cerevisiae requires induction of a transient transcription program that is initiated by Ime1-dependent destruction of the repressor Ume6. Although IME1 mRNA is observed in vegetative cultures, Ime1 protein is not suggesting the presence of a regulatory system restricting translation to meiotic cells.
  • 机译 干扰素γ诱导的头颈部鳞状细胞癌的凋亡通过线粒体和内质网应激相关途径与吲哚胺-2,3-二加氧酶相关
    摘要:BackgroundTumor response to immunotherapy is the consequence of a concerted crosstalk between cytokines and effector cells. Interferon gamma (IFNγ) is one of the common cytokines coordinating tumor immune response and the associated biological consequences. Although the role of IFNγ in the modulation of tumor immunity has been widely documented, the mechanisms regulating IFNγ-induced cell death, during the course of immune therapy, is not described in detail.
  • 机译 含cullin 5的泛素连接酶的作用
    摘要:The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
  • 机译 C1D家族蛋白可协调RNA加工,染色体浓缩和DNA损伤反应
    摘要:Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.
  • 机译 Hippo途径在癌变和治疗中的翻译后修饰的新见解
    摘要:PTMs (posttranslational modifications) such as ubiquitylation, sumoylation, acetylation and protein methylation are pivotal modifiers that determine the activation, deactivation or subcellular localization of signaling proteins, facilitating the initiation, amplification and transduction of signaling. Accumulating evidence suggest that several key signaling molecules in Hippo signaling pathway are tightly regulated by various types of PTMs. Malfunction of these critical signaling modules such as YAP/TAZ, MAT1/2 and LATS1/2 due to deregulated PTMs has been linked to a variety of human diseases such as cancer. In this review article, we summarized the current understanding of the impact of PTMs in regulating Hippo signaling pathway and further discussed the potential therapeutic intervention from the view of PTMs and Hippo pathway.
  • 机译 Cul3-KLHL20泛素连接酶:生理功能,应激反应和疾病的影响
    摘要:Cullin-RING ubiquitin ligases are the largest Ubiquitin ligase family in eukaryotes and are multi-protein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. KLHL20 is a substrate-binding subunit of Cullin3 (Cul3) ubiquitin ligase. Recent studies have identified a number of substrates of KLHL20-based ubiquitin ligase. Through ubiquitination of these substrates, KLHL20 elicits diverse cellular functions, some of which are associated with human diseases. Furthermore, the functions, subcellular localizations, and expression of KLHL20 are regulated by several physiological and stressed signals, which allow KLHL20 to preferentially act on certain substrates to response to these signals. Here, we provide a summary of the functions and regulations of KLHL20 in several physiological processes and stress responses and its disease implications.
  • 机译 基于Cullin 2的E3泛素连接酶的结构和调控及其生物学功能
    摘要:BackgroundCullin-RING E3 ubiquitin ligase complexes play a central role in targeting cellular proteins for ubiquitination-dependent protein turnover through 26S proteasome. Cullin-2 is a member of the Cullin family, and it serves as a scaffold protein for Elongin B and C, Rbx1 and various substrate recognition receptors to form E3 ubiquitin ligases.
  • 机译 Cullin-RING连接酶调节自噬
    摘要:Cullin-RING ligases (CRLs), the largest E3 ubiquitin ligase family, promote ubiquitination and degradation of various cellular key regulators involved in a broad array of physiological and pathological processes, including cell cycle progression, signal transduction, transcription, cardiomyopathy, and tumorigenesis. Autophagy, an intracellular catabolic reaction that delivers cytoplasmic components to lysosomes for degradation, is crucial for cellular metabolism and homeostasis. The dysfunction of autophagy has been proved to associate with a variety of human diseases. Recent evidences revealed the emerging roles of CRLs in the regulation of autophagy. In this review, we will focus mainly on recent advances in our understandings of the regulation of autophagy by CRLs and the cross-talk between CRLs and autophagy, two degradation systems. We will also discuss the pathogenesis of human diseases associated with the dysregulation of CRLs and autophagy. Finally, we will discuss current efforts and future perspectives on basic and translational research on CRLs and autophagy.
  • 机译 洞悉APC / C:从细胞功能到疾病和治疗方法
    摘要:Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
  • 机译 Notch信号通路的CSL蛋白,通用转录因子和上下文相关的corepressors
    摘要:The Notch signaling pathway is a reiteratively used cell to cell communication pathway that triggers pleiotropic effects. The correct regulation of the pathway permits the efficient regulation of genes involved in cell fate decision throughout development. This activity relies notably on the CSL proteins, (an acronym for CBF-1/RBPJ-κ in Homo sapiens/Mus musculus respectively, Suppressor of Hairless in Drosophila melanogaster, Lag-1 in Caenorhabditis elegans) which is the unique transcription factor and DNA binding protein involved in this pathway. The CSL proteins have the capacity to recruit activation or repression complexes according to the cellular context. The aim of this review is to describe the different co-repressor proteins that interact directly with CSL proteins to form repression complexes thereby regulating the Notch signaling pathway in animal cells to give insights into the paralogous evolution of these co-repressors in higher eumetazoans and their subsequent effects at developmental processes.
  • 机译 COP9-Signalosome的树状化酶活性通过同时的neddylation增强:洞悉酶蛋白复合物的调控
    摘要:BackgroundCullin-RING ubiquitin ligases (CRLs) are regulated by neddylation, which is a post translation modification of the Cullin family proteins. Neddylation of Cul1 activates the ligase through some means of biochemical mechanisms. The rate of neddylation and its extent are regulated by 2 opposing enzymatic processes: neddylation by an enzymatic cascade, and deneddylation by COP9-Signalosome (CSN) complex protein. The mechanism by which COP9-Signalosome catalytic activity is regulated is not well understood.
  • 机译 癌症中的非整倍性和染色体不稳定性:混乱的困境
    摘要:Genomic instability (GIN) is a hallmark of cancer cells that facilitates the acquisition of mutations conferring aggressive or drug-resistant phenotypes during cancer evolution. Chromosomal instability (CIN) is a form of GIN that involves frequent cytogenetic changes leading to changes in chromosome copy number (aneuploidy). While both CIN and aneuploidy are common characteristics of cancer cells, their roles in tumor initiation and progression are unclear. On the one hand, CIN and aneuploidy are known to provide genetic variation to allow cells to adapt in changing environments such as nutrient fluctuations and hypoxia. Patients with constitutive aneuploidies are more susceptible to certain types of cancers, suggesting that changes in chromosome copy number could positively contribute to cancer evolution. On the other hand, chromosomal imbalances have been observed to have detrimental effects on cellular fitness and might trigger cell cycle arrest or apoptosis. Furthermore, mouse models for CIN have led to conflicting results. Taken together these findings suggest that the relationship between CIN, aneuploidy and cancer is more complex than what was previously anticipated. Here we review what is known about this complex ménage à trois, discuss recent evidence suggesting that aneuploidy, CIN and GIN together promote a vicious cycle of genome chaos. Lastly, we propose a working hypothesis to reconcile the conflicting observations regarding the role of aneuploidy and CIN in tumorigenesis.
  • 机译 相扑和细胞应激反应
    摘要:The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which Sumo can regulate transcription. Although many individual substrates have been described that are sumoylated during the Sumo stress response, an emerging concept is modification of entire complexes or pathways by Sumo. This review focuses on the function and regulation of Sumo during the stress response.
  • 机译 姜黄素和肿瘤免疫编辑:恢复免疫系统
    摘要:Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4+/CD8+ T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy.
  • 机译 Cyclin E2是乳腺癌细胞中与NPAT相关的主要E-cyclin
    摘要:BackgroundThe cyclin E oncogene activates CDK2 to drive cells from G1 to S phase of the cell cycle to commence DNA replication. It coordinates essential cellular functions with the cell cycle including histone biogenesis, splicing, centrosome duplication and origin firing for DNA replication. The two E-cyclins, E1 and E2, are assumed to act interchangeably in these functions. However recent reports have identified unique functions for cyclins E1 and E2 in different tissues, and particularly in breast cancer.
  • 机译 CDKN1C PCNA结合位点的突变通过损害进入S期而抑制细胞增殖
    摘要:CDKN1C (also known as P57kip2) is a cyclin-dependent kinase inhibitor that functions as a negative regulator of cell proliferation through G1 phase cell cycle arrest. Recently, our group described gain-of-function mutations in the PCNA-binding site of CDKN1C that result in an undergrowth syndrome called IMAGe Syndrome (Intrauterine Growth Restriction, Metaphyseal dysplasia, Adrenal hypoplasia, and Genital anomalies), with life-threatening consequences. Loss-of-function mutations in CDKN1C have been identified in 5-10% of individuals with Beckwith-Wiedemann syndrome (BWS), an overgrowth disorder with features that are the opposite of IMAGe syndrome. Here, we investigate the effects of IMAGe-associated mutations on protein stability, cell cycle progression and cell proliferation. Mutations in the PCNA-binding site of CDKN1C significantly increase CDKN1C protein stability and prevent cell cycle progression into the S phase. Overexpression of either wild-type or BWS-mutant CDKN1C inhibited cell proliferation. However, the IMAGe-mutant CDKN1C protein decreased cell growth significantly more than both the wild-type or BWS protein. These findings bring new insights into the molecular events underlying IMAGe syndrome.
  • 机译 极性静电力驱动极向染色体运动
    摘要:Recent experiments revealing nanoscale electrostatic force generation at kinetochores for chromosome motions have prompted models for interactions between positively charged molecules in kinetochores and negative charge at and near the plus ends of microtubules. A clear picture of how kinetochores and centrosomes establish and maintain a dynamic coupling to microtubules for force generation during the complex motions of mitosis remains elusive. The molecular cell biology paradigm requires that specific molecules, or molecular geometries, for polar force generation be identified. While progress has been made regarding explanations of kinetochore-based chromosome motility, molecular machinery for chromosome poleward movements at centrosomes has yet to be identified. The present work concerns polar generation of poleward force in terms of experimentally known electric charge distributions at microtubule minus ends and centrosomes interacting over nanometer distances.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号