您现在的位置:首页>美国卫生研究院文献>Brain Connectivity

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<8/16>
308条结果
  • 机译 半球间可塑性保护神经衰弱后功能丧失的脱去体感皮层
    摘要:Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC.
  • 机译 在亚毫米空间分辨率下使用全脑三维扩散张量成像改进了对短皮质缔合纤维和灰色/白色物质边界的描绘
    摘要:Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary—both of which will help construct a more accurate structural map of the human brain connectome.
  • 机译 在MGH-USC Connectom扫描仪上研究具有高b值扩散磁共振成像的解析复杂白色物质结构的能力
    摘要:One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.
  • 机译 通过事先的感觉刺激增强静息状态的fcMRI网络。
    摘要:It is important to consider the effect of a previous experimental condition when analyzing resting-state functional connectivity magnetic resonance imaging (fcMRI) data. In this work, a simple sensory stimulation functional MRI (fMRI) experiment was conducted between two resting-state fcMRI acquisitions in anesthetized rats using a high-field small-animal MR scanner. Previous human studies have reported fcMRI network alteration by prior task/stimulus utilizing similar experimental paradigms. An anesthetized rat preparation was used to test whether brain regions with higher level functions are involved in post-task/stimulus fcMRI network alteration. We demonstrate significant fcMRI enhancement poststimulation in the sensory cortical, limbic, and insular brain regions in rats. These brain regions have been previously implicated in vigilance and anesthetic arousal networks. We tested their experimental paradigm in several inbred strains of rats with known phenotypic differences in anesthetic susceptibility and cerebral vascular function. Brown Norway (BN), Dahl Salt-Sensitive (SS), and consomic SSBN13 strains were tested. We have previously shown significant differences in blood oxygen level-dependent fMRI activity and fcMRI networks across these strains. Here we report statistically significant interstrain differences in regional fcMRI poststimulation enhancement. In the SS strain, poststimulation enhancement occurred in posterior sensory and limbic cortical brain regions. In the BN strain, poststimulation enhancement appeared in anterior cingulate and subcortical limbic brain regions. These results imply that a prior condition has a significant impact on fcMRI networks that depend on intersubject difference in genetics and physiology.
  • 机译 在阿尔茨海默氏病患者中从皮质到右海马旁回的有效连通性降低
    摘要:The purpose of this study was to detect effective connectivity (EC) changes in the default mode network and hippocampus network in 20 patients with Alzheimer's disease (AD) and 20 cognitively normal (CN) subjects, using multivariate Granger causality. The authors used the maximum coefficients in the multivariate autoregression model to quantitatively measure the different EC strength levels between the CN and AD groups. It was demonstrated that the EC strength difference can classify AD from CN subjects. Further, the right parahippocampal gyrus (PHP_R) showed imbalanced bidirectional EC connections. The PHP_R received weaker input connections from the neocortices, but its output connections were significantly increased in AD. These findings may provide neural physiological mechanisms for interpreting AD subjects' memory deficits during the encoding processes.
  • 机译 脊柱裂的脊髓发育不良性体plastic体的结构,完整性和功能
    摘要:Although there are many studies of people with complete or partial hypogenesis of the corpus callosum (CC), little is understood about the hypoplastic CC in which all structures are present but thinned. Spina bifida myelomeningocele (SBM) is a model organism for such studies because many have either a hypogenetic or hypoplastic CC. We used diffusion tensor tractography (DTT) to evaluate the hypoplastic CC in SBM and its relation to interhemispheric functions and intelligence quotient (IQ). Participants were individuals with SBM and an intact or hypoplastic CC (n=28), who were compared to a typically developing comparison group (n=32). Total and regional DTT volume and integrity measures (fractional anisotropy, axial diffusivity, and radial diffusivity) of the CC were related to measures of intelligence (IQ), bimanual motor functioning, and dichotic auditory performance. As predicted, DTT showed variations in volume and integrity that were maximized in the entire CC and the posterior CC. IQ correlated with entire CC volume, anterior and posterior regional CC volumes, and also with measures of integrity. Bimanual motor functioning correlated with the anterior and posterior volumes of the CC but not with any integrity measures. Axial diffusivity in the posterior CC was negatively correlated with right ear dichotic listening performance. The hypoplastic CC is not macrostructurally or microstructurally intact in SBM, even when it appears radiologically intact. Both volume and integrity of the posterior regions were related to reductions in IQ and to interhemispheric processing. These findings may transfer to other disorders characterized by a hypoplastic CC.
  • 机译 通过稀疏表示在阿尔茨海默氏病神经成像计划数据库中进行内在功能成分分析
    摘要:Alzheimer's disease (AD) is the most common type of dementia (accounting for 60% to 80%) and is the fifth leading cause of death for those people who are 65 or older. By 2050, one new case of AD in United States is expected to develop every 33 sec. Unfortunately, there is no available effective treatment that can stop or slow the death of neurons that causes AD symptoms. On the other hand, it is widely believed that AD starts before development of the associated symptoms, so its prestages, including mild cognitive impairment (MCI) or even significant memory concern (SMC), have received increasing attention, not only because of their potential as a precursor of AD, but also as a possible predictor of conversion to other neurodegenerative diseases. Although these prestages have been defined clinically, accurate/efficient diagnosis is still challenging. Moreover, brain functional abnormalities behind those alterations and conversions are still unclear. In this article, by developing novel sparse representations of whole-brain resting-state functional magnetic resonance imaging signals and by using the most updated Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we successfully identified multiple functional components simultaneously, and which potentially represent those intrinsic functional networks involved in the resting-state activities. Interestingly, these identified functional components contain all the resting-state networks obtained from traditional independent-component analysis. Moreover, by using the features derived from those functional components, it yields high classification accuracy for both AD (94%) and MCI (92%) versus normal controls. Even for SMC we can still have 92% accuracy.
  • 机译 经济交流中感知不公平的神经基础
    摘要:Human decision making in situations of inequity has long been regarded as a competition between the sense of fairness and self-interest, primarily based on behavioral and neuroimaging studies of inequity that disfavor the actor while favoring others. Here, we use functional magnetic resonance imaging experiments to study refusals and protests using both favoring and disfavoring inequity in three economic exchange games with undercompensating, nearly equal, and overcompensating offers. Refusals of undercompensating offers recruited a heightened activity in the right dorsolateral prefrontal cortex (dlPFC). Accepting of overcompensating offers recruited significantly higher node activity in, and network activity among, the caudate, the cingulate cortex, and the thalamus. Protesting of undercompensating fixed offers activated the network consisting of the right dlPFC and the left ventrolateral prefrontal cortex and midbrain in the substantia nigra. These findings suggest that perceived fairness and social decisions are the results of coordination between evaluated fairness norms, self-interest, and reward.
  • 机译 轻度阿尔茨海默氏病和遗忘性轻度认知障碍的默认模式网络内在活动和功能连接的差异及其关系
    摘要:There is evidence that the default mode network (DMN) functional connectivity is impaired in Alzheimer's disease (AD) and few studies also reported a decrease in DMN intrinsic activity, measured by the amplitude of low-frequency fluctuations (ALFFs). In this study, we analyzed the relationship between DMN intrinsic activity and functional connectivity, as well as their possible implications on cognition in patients with mild AD and amnestic mild cognitive impairment (aMCI) and healthy controls. In addition, we evaluated the differences both in connectivity and ALFF values between these groups. We recruited 29 controls, 20 aMCI, and 32 mild AD patients. To identify the DMN, functional connectivity was calculated by placing a seed in the posterior cingulate cortex (PCC). Within the DMN mask obtained, we calculated regional average ALFFs. Compared with controls, aMCI patients showed decreased ALFFs in the temporal region; compared with AD, aMCI showed higher values in the PCC but lower in the temporal area. The mild AD group had lower ALFFs in the PCC compared with controls. There was no difference between the connectivity in the aMCI group compared with the other groups, but AD patients showed decreased connectivity in the frontal, parietal, and PCC. Also, PCC ALFFs correlated to functional connectivity in nearly all subregions. Cognitive tests correlated to connectivity values but not to ALFFs. In conclusion, we found that DMN connectivity and ALFFs are correlated in these groups. Decreased PCC ALFFs disrupt the DMN functional organization, leading to cognitive problems in the AD spectrum.
  • 机译 纤维肌痛与疼痛和感觉运动脑区之间的连通性降低相关。
    摘要:Fibromyalgia (FM) is a syndrome characterized by chronic pain without known peripheral causes. Previously, we have reported dysfunctional pain inhibitory mechanisms for FM patients during pain administration. In this study we employed a seed correlation analysis, independent component analysis (ICA), and an analysis of fractional amplitude of low frequency fluctuations (fALFF) to study differences between a cohort of female FM patients and an age- and sex-matched healthy control group during a resting-state condition. FM patients showed decreased connectivity between thalamus and premotor areas, between the right insula and primary sensorimotor areas, and between supramarginal and prefrontal areas. Individual sensitivity to painful pressure was associated with increased connectivity between pain-related regions (e.g., insula and thalamus) and midline regions of the default mode network (including posterior cingulate cortex and medial prefrontal cortex) among patients and controls. However, neither ICA nor fALFF revealed any group differences. Our findings suggest that abnormal connectivity patterns between pain-related regions and the remaining brain during rest reflect an impaired central mechanism of pain modulation in FM. Weaker coupling between pain regions and prefrontal- and sensorimotor areas might indicate a less efficient system level control of pain circuits. Moreover, our results show that multiple, complementary analytical approaches are valuable for obtaining a more comprehensive characterization of deviant resting-state activity. In conclusion, our findings show that FM primarily is associated with decreased connectivity, for example, between several pain-related areas and sensorimotor regions, which could reflect a deficiency in pain regulation.
  • 机译 神经元还是血液动力学?掌握功能性MRI信号
    摘要:Magnetic resonance imaging (MRI) and functional MRI (fMRI) continue to advance because creative physicists, engineers, neuroscientists, clinicians, and physiologists find new ways for extracting more information from the signal. Innovations in pulse sequence design, paradigm design, and processing methods have advanced the field and firmly established fMRI as a cornerstone for understanding the human brain. In this article, the field of fMRI is described through consideration of the central problem of separating hemodynamic from neuronal information. Discussed here are examples of how pulse sequences, activation paradigms, and processing methods are integrated such that novel, high-quality information can be obtained. Examples include the extraction of information such as activation onset latency, metabolic rate, neuronal adaptation, vascular patency, vessel diameter, vigilance, and subvoxel activation. Experimental measures include time series latency, hemodynamic shape, MR phase, multivoxel patterns, ratios of activation-related R2* to R2, metabolic rate changes, fluctuation correlations and frequencies, changes in fluctuation correlations and frequencies over time, resting correlation states, echo time dependence, and more.
  • 机译 功能网络的直接成像
    • 作者:Eric C. Wong
    • 刊名:Brain Connectivity
    • 2014年第7期
    摘要:In blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI), current methods typically acquire ∼500,000 imaging voxels at each time point, and then use computer algorithms to reduce this data to the coefficients of a few hundred parcels or networks. This suggests that the amount of relevant information present in the fMRI signal is relatively small, and presents an opportunity to greatly improve the speed and signal to noise ratio (SNR) of the fMRI process. In this work, a theoretical framework is presented for calculating the coefficients of functional networks directly from highly undersampled fMRI data. Using predefined functional parcellations or networks and a compact k-space trajectory that samples data at optimal spatial scales, the problem of estimating network coefficients is reformulated to allow for direct least squares estimation, without Fourier encoding. By simulation, this approach is shown to allow for acceleration of the imaging process under ideal circumstances by nearly three orders of magnitude.
  • 机译 生理噪声校正对静息状态功能连接的重测可靠性的影响
    摘要:The utility and success of resting-state functional connectivity MRI (rs-fcMRI) depend critically on the reliability of this technique and the extent to which it accurately reflects neuronal function. One challenge is that rs-fcMRI is influenced by various sources of noise, particularly cardiac- and respiratory-related signal variations. The goal of the current study was to evaluate the impact of various physiological noise correction techniques, specifically those that use independent cardiac and respiration measures, on the test–retest reliability of rs-fcMRI. A group of 25 subjects were each scanned at three time points—two within the same imaging session and another 2–3 months later. Physiological noise corrections accounted for significant variance, particularly in blood vessels, sagittal sinus, cerebrospinal fluid, and gray matter. The fraction of variance explained by each of these corrections was highly similar within subjects between sessions, but variable between subjects. Physiological corrections generally reduced intrasubject (between-session) variability, but also significantly reduced intersubject variability, and thus reduced the test–retest reliability of estimating individual differences in functional connectivity. However, based on known nonneuronal mechanisms by which cardiac pulsation and respiration can lead to MRI signal changes, and the observation that the physiological noise itself is highly stable within individuals, removal of this noise will likely increase the validity of measured connectivity differences. Furthermore, removal of these fluctuations will lead to better estimates of average or group maps of connectivity. It is therefore recommended that studies apply physiological noise corrections but also be mindful of potential correlations with measures of interest.
  • 机译 分辨率为200μm的大鼠大脑功能连接
    摘要:The somatosensory functional magnetic resonance imaging (fMRI) response to electrical stimulation of the middle phalange of the second digit of four rats at a spatial resolution of 200 μm cubic at 9.4 T is reported. At high threshold (p<0.002), activated voxels encompass a penetrating vein that passes across the gray matter. These voxels lie mostly in three contiguous slices perpendicular to the pial surface. This activation is assigned to the representation in the forepaw barrel subfield (FBS) of a single cortical column of this phalange. In addition, the activation of the indusium griseum (IG) is visualized robustly. Voxels revealed by fMRI were used to observe functional connectivity to other voxels of the sensorimotor cortex using fcMRI. Results of this experiment were analyzed as a function of decreasing threshold, which exhibited spreading connectivity that revealed S2, M1/M2, and contralateral S1. Noting that every cubic millimeter of tissue contains 125 voxels, connectivity patterns are complex. It is hypothesized that they reflect connections within gray matter by association fibers. S2 and IG revealed connectivities with many voxels across the sensorimotor cortex. These regions also showed subregional variation of connectivity. A 1-cm-diameter surface coil with a local low-noise RF amplifier was used in these studies. The usual region of sensitivity (ROS) of such a coil is 1 cm diameter by 0.5 cm depth. Significant connectivity was observed between time courses of voxels that were within the ROS and voxels that were outside, which extends the volume of tissue that can be observed by the methods of this article.
  • 机译 拯救全球:全球信号连通性作为利用功能磁共振成像研究临床人群的工具
    摘要:The global signal is commonly removed from resting-state data, as it was presumed to reflect physiological noise. However, removal of the global signal is now under debate, as this signal may reflect important neuronal components, and its removal may introduce artifacts into the data. Here, we show that the functional connectivity (FC) of the global signal is of functional relevance, as it differentiates between schizophrenia patients and healthy controls during rest. We also demonstrate that other reported findings related to various clinical populations may actually reflect alternations in global signal FC. The evidence of the clinical relevance of the global signal propose its usage as a research tool, and extend previously reported perils of global signal removal in resting-state data of clinical populations.
  • 机译 小儿静息态功能磁共振成像的采集时间和网络稳定性
    摘要:Resting-state functional magnetic resonance imaging (rs-fMRI) has been shown to elucidate reliable patterns of brain networks in both children and adults. Studies in adults have shown that rs-fMRI acquisition times of ∼5 to 6 min provide adequate sampling to produce stable spatial maps of a number of different brain networks. However, it is unclear whether the acquisition time directly translates to studies of children. While there are many similarities between the brains of children and adults, many differences are also evident. Children have increased metabolism, differences in brain morphology and connectivity strengths, greater brain plasticity, and increased brain noise. Furthermore, there are differences in physiologic parameters, such as heart and respiratory rates, and compliance of the blood vessels. These developmental differences could translate into different acquisition times for rs-fMRI studies in pediatric populations. Longer scan times, however, increase the subject burden and the risk for greater movement, especially in children. Thus, the goal of this study was to assess the optimum acquisition time of rs-fMRI to extract stable brain networks in school-age children. We utilized fuzzy set theory in 84 six-to-eight year-old children and found that eight networks, including the default mode, salience, frontal, left frontoparietal, right frontoparietal, sensorimotor, auditory, and visual networks, all stabilized after ∼5½ min. The sensorimotor network showed the least stability, whereas the salience and auditory networks showed the greatest stability. A secondary analysis using dual regression confirmed these results. In conclusion, in young children with little head motion, rs-fMRI acquisition times of ∼5½ min can extract the full complement of brain networks.
  • 机译 频繁和区分性子网挖掘用于轻度认知障碍分类
    摘要:Recent studies on brain networks have suggested that many brain diseases, such as Alzheimer's disease and mild cognitive impairment (MCI), are related to a large-scale brain network, rather than individual brain regions. However, it is challenging to find such a network from the whole brain network due to the complexity of brain networks. In this article, the authors propose a novel method to mine the discriminative subnetworks for classifying MCI patients from healthy controls (HC). Specifically, the authors first extract a set of frequent subnetworks from each of the two groups (i.e., MCI and HC), respectively. Then, measure the discriminative ability of those frequent subnetworks using the graph kernel-based classification method and select the most discriminative subnetworks for subsequent classification. The results on the functional connectivity networks of 12 MCI and 25 HC show that this method can obtain competitive results compared with state-of-the-art methods on MCI classification.
  • 机译 阿尔茨海默氏病中的网络功能障碍:完善脱节假说
    摘要:Much effort in recent years has focused on understanding the effects of Alzheimer's disease (AD) on neural function. This effort has resulted in an enormous number of papers describing different facets of the functional derangement seen in AD. A particularly important tool for these investigations has been resting-state functional connectivity. Attempts to comprehensively synthesize resting-state functional connectivity results have focused on the potential utility of functional connectivity as a biomarker for disease risk, disease staging, or prognosis. While these are all appropriate uses of this technique, the purpose of this review is to examine how functional connectivity disruptions inform our understanding of AD pathophysiology. Here, we examine the rationale and methodological considerations behind functional connectivity studies and then provide a critical review of the existing literature. In conclusion, we propose a hypothesis regarding the development and spread of functional connectivity deficits seen in AD.
  • 机译 白色物质损伤在轻度认知障碍中使大脑功能网络混乱。
    摘要:Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer's Disease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We investigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive impairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical dependence between the fractional anisotropy and the graph metrics. These regions are part of an episodic memory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI.
  • 机译 颅内刺激诱发的功能性磁共振成像网络可能有助于定义癫痫区。
    摘要:Patients with medically intractable epilepsy often undergo invasive evaluation and surgery, with a 50% success rate. The low success rate is likely due to poor identification of the epileptogenic zone (EZ), the brain area causing seizures. This work introduces a new method using functional magnetic resonance imaging (fMRI) with simultaneous direct electrical stimulation of the brain that could help localize the EZ, performed in five patients with medically intractable epilepsy undergoing invasive evaluation with intracranial depth electrodes. Stimulation occurred in a location near the hypothesized EZ and a location away. Electrical recordings in response to stimulation were recorded and compared to fMRI. Multiple stimulation parameters were varied, like current and frequency. The brain areas showing fMRI response were compared with the areas resected and the success of surgery. Robust fMRI maps of activation networks were easily produced, which also showed a significant but weak positive correlation between quantitative measures of blood-oxygen-level-dependent (BOLD) activity and measures of electrical activity in response to direct electrical stimulation (mean correlation coefficient of 0.38 for all acquisitions that produced a strong BOLD response). For four patients with outcome data at 6 months, successful surgical outcome is consistent with the resection of brain areas containing high local fMRI activity. In conclusion, this method demonstrates the feasibility of simultaneous direct electrical stimulation and fMRI in humans, which allows the study of brain connectivity with high resolution and full spatial coverage. This innovative technique could be used to better define the localization and extension of the EZ in intractable epilepsies, as well as for other functional neurosurgical procedures.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号