您现在的位置:首页>美国卫生研究院文献>Brain Connectivity

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<6/16>
308条结果
  • 机译 使用Edge Voxel信息改善运动回归以进行rs-fMRI连接性研究
    摘要:Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.
  • 机译 静止状态网络之间的信息流
    摘要:The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method—addressing differences in IF between RSNs for any generic data—can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. controls. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.
  • 机译 横向前额叶皮层通过多网络连接为流体智能做出贡献
    摘要:Our ability to effectively adapt to novel circumstances—as measured by general fluid intelligence—has recently been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure that summarizes both within-network connectivity and across-network connectivity. We used additional graph theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelligence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that contributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10% of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we found that the LPFC across-network connectivity predicted individuals' fluid intelligence and this correlation remained statistically significant when controlling for global connectivity (which includes within-network connectivity). This supports the conclusion that across-network connectivity independently contributes to the relationship between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by being a connector hub with a truly global multisystem connectivity throughout the brain.
  • 机译 唐氏综合症和威廉姆斯综合症患者的静息状态功能连接性与典型的发展中对照相比
    摘要:The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (<0.1 Hz) blood oxygen level-dependent signal fluctuations between brain regions, has dramatically improved our understanding of the functional architecture of the typically developing (TD) human brain. This study examined rsFC in Down syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.
  • 机译 卒中后未损伤运动网络中髓磷脂和轴突重塑的定量分析
    摘要:Contralesional brain connectivity plasticity was previously reported after stroke. This study aims at disentangling the biological mechanisms underlying connectivity plasticity in the uninjured motor network after an ischemic lesion. In particular, we measured generalized fractional anisotropy (GFA) and magnetization transfer ratio (MTR) to assess whether poststroke connectivity remodeling depends on axonal and/or myelin changes. Diffusion-spectrum imaging and magnetization transfer MRI at 3T were performed in 10 patients in acute phase, at 1 and 6 months after stroke, which was affecting motor cortical and/or subcortical areas. Ten age- and gender-matched healthy volunteers were scanned 1 month apart for longitudinal comparison. Clinical assessment was also performed in patients prior to magnetic resonance imaging (MRI). In the contralesional hemisphere, average measures and tract-based quantitative analysis of GFA and MTR were performed to assess axonal integrity and myelination along motor connections as well as their variations in time. Mean and tract-based measures of MTR and GFA showed significant changes in a number of contralesional motor connections, confirming both axonal and myelin plasticity in our cohort of patients. Moreover, density-derived features (peak height, standard deviation, and skewness) of GFA and MTR along the tracts showed additional correlation with clinical scores than mean values. These findings reveal the interplay between contralateral myelin and axonal remodeling after stroke.
  • 机译 图论分析揭示了癫痫患者大脑功能的破坏
    摘要:The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
  • 机译 与抗癫痫药使用相关的脑图拓扑变化
    摘要:Neuroimaging studies of functional connectivity using graph theory have furthered our understanding of the network structure in temporal lobe epilepsy (TLE). Brain network effects of anti-epileptic drugs could influence such studies, but have not been systematically studied. Resting-state functional MRI was analyzed in 25 patients with TLE using graph theory analysis. Patients were divided into two groups based on anti-epileptic medication use: those taking carbamazepine/oxcarbazepine (CBZ/OXC) (n=9) and those not taking CBZ/OXC (n=16) as a part of their medication regimen. The following graph topology metrics were analyzed: global efficiency, betweenness centrality (BC), clustering coefficient, and small-world index. Multiple linear regression was used to examine the association of CBZ/OXC with graph topology. The two groups did not differ from each other based on epilepsy characteristics. Use of CBZ/OXC was associated with a lower BC. Longer epilepsy duration was also associated with a lower BC. These findings can inform graph theory-based studies in patients with TLE. The changes observed are discussed in relation to the anti-epileptic mechanism of action and adverse effects of CBZ/OXC.
  • 机译 图论脑网络度量的可重复性:系统评价
    摘要:This systematic review aimed to assess the reproducibility of graph-theoretic brain network metrics. Primary research studies of test-retest reliability conducted on healthy human subjects were included that quantified test-retest reliability using either the intraclass correlation coefficient (ICC) or the coefficient of variance. The MEDLINE, Web of Knowledge, Google Scholar, and OpenGrey databases were searched up to February 2014. Risk of bias was assessed with 10 criteria weighted toward methodological quality. Twenty-three studies were included in the review (n=499 subjects) and evaluated for various characteristics, including sample size (5–45), retest interval (<1 h to >1 year), acquisition method, and test-retest reliability scores. For at least one metric, ICCs reached the fair range (ICC 0.40–0.59) in one study, the good range (ICC 0.60–0.74) in five studies, and the excellent range (ICC>0.74) in 16 studies. Heterogeneity of methods prevented further quantitative analysis. Reproducibility was good overall. For the metrics having three or more ICCs reported for both functional and structural networks, six of seven were higher in structural networks, indicating that structural networks may be more reliable over time. The authors were also able to highlight and discuss a number of methodological factors affecting reproducibility.
  • 机译 测试大脑功能连通性上的组差异:使用相关性还是部分相关性?
    摘要:Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more stable testing results than using partial correlations; the conclusion is reversed if the covariance matrices, not the precision matrices, are sparse. These results may have useful implications to future studies on testing functional connectivity differences.
  • 机译 Alpha-Gamma相幅耦合方法及其在自闭症谱系障碍中的应用
    摘要:Adult studies have shown that a basic property of resting-state (RS) brain activity is the coupling of posterior alpha oscillations (alpha phase) to posterior gamma oscillations (gamma amplitude). The present study examined whether this basic RS process is present in children. Given reports of abnormal parietal–occipital RS alpha in children with autism spectrum disorder (ASD), the present study examined whether RS alpha-to-gamma phase-amplitude coupling (PAC) is disrupted in ASD. Simulations presented in this study showed limitations with traditional PAC analyses. In particular, to avoid false-positive PAC findings, simulations showed the need to use a unilateral passband to filter the upper frequency band as well as the need for longer epochs of data. For the human study, eyes-closed RS magnetoencephalography data were analyzed from 25 children with ASD and 18 typically developing (TD) children with at least 60 sec of artifact-free data. Source modeling provided continuous time course data at a midline parietal–occipital source for PAC analyses. Greater alpha-to-gamma PAC was observed in ASD than TD (p<0.005). Although children with ASD had higher PAC values, in both groups gamma activity increased at the peak of the alpha oscillation. In addition, an association between alpha power and alpha-to-gamma PAC was observed in both groups, although this relationship was stronger in ASD than TD (p<0.05). Present results demonstrated that although alpha-to-gamma PAC is present in children, this basic RS process is abnormal in children with ASD. Finally, simulations and the human data highlighted the need to consider the interplay between alpha power, epoch length, and choice of signal processing methods on PAC estimates.
  • 机译 元音生产过程中与声音稳定性相关的功能连接性:对人声马达控制的意义
    摘要:Vowels provide the acoustic foundation of communication through speech and song, but little is known about how the brain orchestrates their production. Positron emission tomography was used to study regional cerebral blood flow (rCBF) during sustained production of the vowel /a/. Acoustic and blood flow data from 13, normal, right-handed, native speakers of American English were analyzed to identify CBF patterns that predicted the stability of the first and second formants of this vowel. Formants are bands of resonance frequencies that provide vowel identity and contribute to voice quality. The results indicated that formant stability was directly associated with blood flow increases and decreases in both left- and right-sided brain regions. Secondary brain regions (those associated with the regions predicting formant stability) were more likely to have an indirect negative relationship with first formant variability, but an indirect positive relationship with second formant variability. These results are not definitive maps of vowel production, but they do suggest that the level of motor control necessary to produce stable vowels is reflected in the complexity of an underlying neural system. These results also extend a systems approach to functional image analysis, previously applied to normal and ataxic speech rate that is solely based on identifying patterns of brain activity associated with specific performance measures. Understanding the complex relationships between multiple brain regions and the acoustic characteristics of vocal stability may provide insight into the pathophysiology of the dysarthrias, vocal disorders, and other speech changes in neurological and psychiatric disorders.
  • 机译 颞叶癫痫脑网络功能连接性及其动态相互作用的演变。
    摘要:This study presents a cross-sectional investigation of functional networks in temporal lobe epilepsy (TLE) as they evolve over years of disease. Networks of interest were identified based on a priori hypotheses: the network of seizure propagation ipsilateral to the seizure focus, the same regions contralateral to seizure focus, the cross hemisphere network of the same regions, and a cingulate midline network. Resting functional magnetic resonance imaging data were acquired for 20 min in 12 unilateral TLE patients, and 12 age- and gender-matched healthy controls. Functional changes within and between the four networks as they evolve over years of disease were quantified by standard measures of static functional connectivity and novel measures of dynamic functional connectivity. The results suggest an initial disruption of cross-hemispheric networks and an increase in static functional connectivity in the ipsilateral temporal network accompanying the onset of TLE seizures. As seizures progress over years, the static functional connectivity across the ipsilateral network diminishes, while dynamic functional connectivity measures show the functional independence of this ipsilateral network from the network of midline regions of the cingulate declines. This implies a gradual breakdown of the seizure onset and early propagation network involving the ipsilateral hippocampus and temporal lobe as it becomes more synchronous with the network of regions responsible for secondary generalization of the seizures, a process that may facilitate the spread of seizures across the brain. Ultimately, the significance of this evolution may be realized in relating it to symptoms and treatment outcomes of TLE.
  • 机译 功能性大脑网络经济的个体多样性
    摘要:On average, brain network economy represents a trade-off between communication efficiency, robustness and connection cost, though, an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with 7 Tesla functional MRI and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=−0.97) and the physical connection cost in 3D space (r=−0.62). On the other hand, clustering was negatively related to attack response (r=−0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at 3 Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.
  • 机译 未经药物治疗的青少年抑郁症患者杏仁核与亚舌状前扣带回皮质之间自下而上的有效连通性受损:动态因果模型分析的结果
    摘要:Major depressive disorder (MDD) is a significant contributor to lifetime disability and frequently emerges in adolescence, yet little is known about the neural mechanisms of MDD in adolescents. Dynamic causal modeling (DCM) analysis is an innovative tool that can shed light on neural network abnormalities. A DCM analysis was conducted to test several frontolimbic effective connectivity models in 27 adolescents with MDD and 21 healthy adolescents. The best neural model for each person was identified using Bayesian model selection. The findings revealed that the two adolescent groups fit similar optimal neural models. The best across-groups model was then used to infer upon both within-group and between-group tests of intrinsic and modulation parameters of the network connections. First, for model validation, within-group tests revealed robust evidence for bottom-up connectivity, but less evidence for strong top-down connectivity in both groups. Second, we tested for differences between groups on the validated parameters of the best model. This revealed that adolescents with MDD had significantly weaker bottom-up connectivity in one pathway, from amygdala to sgACC (p=0.008), than healthy controls. This study provides the first examination of effective connectivity using DCM within neural circuitry implicated in emotion processing in adolescents with MDD. These findings aid in advancing understanding the neurobiology of early-onset MDD during adolescence and have implications for future research investigating how effective connectivity changes across contexts, with development, over the course of the disease, and after intervention.
  • 机译 走向提升的觉醒,自主和运动系统的人脑干核的体内神经影像模板
    摘要:Brainstem nuclei (Bn) in humans play a crucial role in vital functions, such as arousal, autonomic homeostasis, sensory and motor relay, nociception, sleep, and cranial nerve function, and they have been implicated in a vast array of brain pathologies. However, an in vivo delineation of most human Bn has been elusive because of limited sensitivity and contrast for detecting these small regions using standard neuroimaging methods. To precisely identify several human Bn in vivo, we employed a 7 Tesla scanner equipped with multi-channel receive-coil array, which provided high magnetic resonance imaging sensitivity, and a multi-contrast (diffusion fractional anisotropy and T2-weighted) echo-planar-imaging approach, which provided complementary contrasts for Bn anatomy with matched geometric distortions and resolution. Through a combined examination of 1.3 mm3 multi-contrast anatomical images acquired in healthy human adults, we semi-automatically generated in vivo probabilistic Bn labels of the ascending arousal (median and dorsal raphe), autonomic (raphe magnus, periaqueductal gray), and motor (inferior olivary nuclei, two subregions of the substantia nigra compatible with pars compacta and pars reticulata, two subregions of the red nucleus, and, in the diencephalon, two subregions of the subthalamic nucleus) systems. These labels constitute a first step toward the development of an in vivo neuroimaging template of Bn in standard space to facilitate future clinical and research investigations of human brainstem function and pathology. Proof-of-concept clinical use of this template is demonstrated in a minimally conscious patient with traumatic brainstem hemorrhages precisely localized to the raphe Bn involved in arousal.
  • 机译 使用动脉自旋标记表征静息状态的脑功能
    摘要:Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function.
  • 机译 多个皮质网络中的功能连接性与老年人认知领域的性能相关。
    摘要:Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65–90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging.
  • 机译 持久性可卡因吸烟者与健康对照组相比功能连接强度改变
    摘要:Past research involving cocaine and resting-state functional connectivity (RSFC) has shown altered functional connectivity within the frontal and between the frontal and other cortical and subcortical brain regions in chronic users of cocaine. However, there have been discrepancies in literature regarding the relationship between RSFC between brain regions and cocaine use behavior. This study explored the RSFC between brain regions in cocaine smokers abstinent from cocaine use for 72 h and healthy controls. Also, the relationship between RSFC between brain regions and various cocaine use measures (cocaine use duration; frequency, and money spent on cocaine/week) was examined. Twenty chronic cocaine users and 17 controls completed a resting-state scan and an anatomical MPRAGE scan. Group independent component analysis performed on functional magnetic resonance imaging data identified 13 ICs pertaining to distinct resting-state networks, and group-level differences were examined. To examine inter-network functional connectivity between brain regions, these 13 ICs were divided into 61 distinct regions of interest (ROIs). Correlations were calculated between 61 ROI time series. For the ROI pairs that significantly differed from controls in connectivity strength, correlations were computed between connectivity strength and cocaine use measures. Results showed an enhanced RSFC within the sensory motor cortex and the left frontal–parietal network in cocaine users than controls. An increased inter-network RSFC between frontal–temporal and frontal–parietal brain regions, and a decreased RSFC between parietal–parietal, occipital–limbic, occipital–occipital, and occipital–parietal brain regions was found in cocaine users. This study demonstrated that intra-network connectivity strength of sensory motor cortex was negatively correlated with years of cocaine use. Inter-network connectivity strength between occipital–limbic brain regions was positively correlated with years of cocaine use, while connectivity strength within occipital brain regions was negatively related to cocaine use frequency and money spent on cocaine per week in abstinent cocaine users.
  • 机译 外伤性脑损伤患者新型工作记忆任务中信息流的调查
    摘要:Working memory (WM) is often compromised after traumatic brain injury (TBI). A number of functional and effective connectivity studies investigated the interaction between brain regions during WM task performance. However, previously used WM tasks did not allow differentiation of WM subprocesses such as capacity and manipulation. We used a novel WM paradigm, CapMan, to investigate effective connectivity associated with the capacity and manipulation subprocesses of WM in individuals with TBI relative to healthy controls (HCs). CapMan allows independent investigation of brain regions associated with capacity and manipulation, while minimizing the influence of other WM-related subprocesses. Areas of the fronto-parietal WM network, previously identified in healthy individuals as engaged in capacity and manipulation during CapMan, were analyzed with the Independent Multiple-sample Greedy Equivalence Search (IMaGES) method to investigate the differences in information flow between healthy individuals and individuals with TBI. We predicted that diffuse axonal injury that often occurs after TBI might lead to changes in task-based effective connectivity and result in hyperconnectivity between the regions engaged in task performance. In accordance with this hypothesis, TBI participants showed greater inter-hemispheric connectivity and less coherent information flow from posterior to anterior brain regions compared with HC participants. Thus, this study provides much needed evidence about the potential mechanism of neurocognitive impairments in individuals affected by TBI.
  • 机译 轻度创伤性脑损伤患者静息状态功能连通性离散小波分解的多频率范围研究
    摘要:The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS−]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125–0.250 Hz, SF2: 0.060–0.125 Hz, SF3: 0.030–0.060 Hz, SF4: 0.015–0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS−), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS− patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS− group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号