您现在的位置:首页>美国卫生研究院文献>Brain Connectivity

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/16>
303条结果
  • 机译 丘脑皮质心律失常模型中的脑网络
    摘要:Sensory information processing and higher cognitive functions rely on the interactions between thalamus and cortex. Many types of neurological and psychiatric disorders are accompanied or driven by alterations in the brain connectivity. In this study, putative changes in functional and effective corticocortical (CC), thalamocortical (TC), and corticothalamic (CT) connectivity during wakefulness and slow-wave sleep (SWS) in a model of thalamocortical dysrhythmia, TRIP8b−/− mice, and in control (wild-type or WT) mice are described. Coherence and nonlinear Granger causality (GC) were calculated for twenty 10 s length epochs of SWS and active wakefulness (AW) of each animal. Coherence was reduced between 4 and ca 20 Hz in the cortex and between cortex and thalamus during SWS compared with AW in WT but not in TRIP8b−/− mice. Moreover, TRIP8b−/− mice showed lower CT coherence during AW compared with WT mice; these differences were no longer present during SWS. Unconditional GC analysis also showed sleep-related reductions in TC and CT couplings in WT mice, while TRIP8b−/− mice showed diminished wake and enhanced sleep CC coupling and rather strong CT-directed coupling during wake and sleep, although smaller during sleep. Conditional GC coupling analysis confirmed the diminished CC and enhanced CT coupling in TRIP8b−/− mice. Our findings indicate that altered properties of hyperpolarization-activated cyclic nucleotide-gated cation channels, characterizing TRIP8b−/− mice, have clear effects on CC, TC, and CT networks. A more complete understanding of the function of the altered communication within these networks awaits detailed phenotyping of TRIP8b−/− mice aimed at specifics of sensory and attentional processes.
  • 机译 基于实时功能磁共振成像的神经反馈中风性失语症中风患者语言区域的功能连接
    摘要:Stroke lesions in the language centers of the brain impair the language areas and their connectivity. This article describes the dynamics of functional connectivity (FC) of language areas (FCL) during real-time functional magnetic resonance imaging (RT-fMRI)-based neurofeedback training for poststroke patients with expressive aphasia. The hypothesis is that FCL increases during the upregulation of language areas during neurofeedback training and that the training improves FCL with an increasing number of sessions and restores it toward normalcy. Four test and four control patients with expressive aphasia were recruited for the study along with four healthy volunteers termed as the normal group. The test and normal groups were administered four neurofeedback training sessions in between two test sessions, whereas the control group underwent only the two test sessions. The training session requires the subject to exercise language activity covertly so that it upregulates the feedback signal obtained from the Broca's area (in left inferior frontal gyrus) and amplifies the feedback when it is correlated with the Wernicke's area (in left superior temporal gyrus) using RT-fMRI. FC was measured by Pearson's correlation coefficient. The results indicate that the FC of the test group was weaker in the left hemisphere than that of the normal group, and post-training the connections have strengthened (correlation coefficient increases) in the left hemisphere when compared with the control group. The connections of language areas strengthened in both hemispheres during neurofeedback-based upregulation, and multiple training sessions strengthened new pathways and restored left hemispheric connections toward normalcy.
  • 机译 性能与功能相遇的结构:针对声乐生产而调整的白色物质连接
    摘要:Contemporary imaging techniques have increased the potential for establishing how brain regions interact during spoken language. Some imaging methods report bilateral changes in brain activity during speech, whereas another approach finds that the relationship between individual variability in speech measures and individual variability in brain activity more closely resembles clinical observations. This approach has repeatedly demonstrated that speaking rate for phonological and lexical items can be predicted by an inverse relationship between cerebral blood flow in the left inferior frontal region and the right caudate nucleus. To determine whether morphology contributes to this relationship, we examined ipsilateral and contralateral white matter connections between these structures using diffusion tensor imaging, and we further assessed possible relationships between morphology and selected acoustic measures of participants' vocal productions. The ipsilateral connections between the inferior frontal regions and the caudate nuclei had higher average fractional anisotropy and mean diffusivity values than the contralateral connections. Neither contralateral connection between inferior frontal and caudate regions showed a significant advantage on any of the average morphology measures. However, individual differences in white matter morphology were significantly correlated with individual differences in vocal amplitude and frequency stability in the left frontal–right caudate connection. This cortical–striatal connection may be “tuned” for a role in the coordination of cortical and subcortical activity during speech. The structure–function relationship in this cortical-subcortical pathway supports the previous observation of a predictive pattern of cerebral blood flow during speech and may reflect a mechanism that ensures left-hemisphere control of the vocal expression of propositional language.
  • 机译 纠正至:成人脑肿瘤患者的功能连接性:系统综述,作者:Fox ME和King TZ。 Brain Connect 2018; 8(7):381-397。 DOI:10.1089 / brain.2018.0623
    • 作者:
    • 刊名:Brain Connectivity
    • 2018年第9期
    摘要:
  • 机译 典型成年人的结构性社交脑网络的拓扑
    摘要:Although a large body of research has identified discrete neuroanatomical regions involved in social cognition and behavior (the “social brain”), the existing findings are based largely on studies of specific brain structures defined within the context of particular tasks or for specific types of social behavior. The objective of the current work was to view these regions as nodes of a larger collective network and to quantitatively characterize both the topology of that network and the relative criticality of its many nodes. Large-scale data mining was performed to generate seed regions of the social brain. High-quality diffusion MRI data of typical adults were used to map anatomical networks of the social brain. Network topology and nodal centrality were analyzed using graph theory. The structural social brain network demonstrates a high degree of global functional integration with strong local segregation. Bilateral dorsomedial prefrontal cortices and amygdala play the most central roles in the network. Strong probabilistic evidence supports modular divisions of the social brain into subnetworks bearing good resemblance to functionally classified clusters. The present network-driven approach quantifies the structural topology of the social brain as a whole. This work can serve as a critical benchmark against which to compare (1) developmental change in social brain topology over time (from infancy through adolescence and beyond) and (2) atypical network topologies that may be a sign or symptom of disorder (as in conditions such as autism, Williams syndrome, schizophrenia, and others).
  • 机译 维度在使用经典伊辛模型和结构连接体上实现的伊辛模型预测大脑自发行为中的作用
    摘要:There is accumulating evidence that spontaneous fluctuations of the brain are sustained by a structural architecture of axonal fiber bundles. Various models have been used to investigate this structure–function relationship. In this work, we implemented the Ising model using the number of fibers between each pair of brain regions as input. The output of the Ising model simulations on a structural connectome was then compared with empirical functional connectivity data. A simpler two-dimensional classical Ising model was used as the baseline model for comparison purpose. Thermodynamic properties, such as the magnetic susceptibility and the specific heat, illustrated a phase transition from an ordered phase to a disordered phase at the critical temperature. Despite the differences between the two models, the lattice Ising model and the Ising model implemented on a structural connectome (the generalized Ising model) exhibited similar patterns of global properties. To study the behavior of the generalized Ising model around criticality, calculation of the dimensionality and critical exponents was performed for the first time, by introducing a new concept of distance based on structural connectivity. Same value inside the fitting error was found for the dimensionality in both models suggesting similar behavior of the models around criticality.
  • 机译 人脑遍历任务和休息的共同激活模式状态空间
    摘要:Much of our lives are spent in unconstrained rest states, yet cognitive brain processes are primarily investigated using task-constrained states. It may be possible to utilize the insights gained from experimental control of task processes as reference points for investigating unconstrained rest. To facilitate comparison of rest and task functional magnetic resonance imaging data, we focused on activation amplitude patterns, commonly used for task but not rest analyses. During rest, we identified spontaneous changes in temporally extended whole-brain activation-pattern states. This revealed a hierarchical organization of rest states. The top consisted of two competing states consistent with previously identified “task-positive” and “task-negative” activation patterns. These states were composed of more specific states that repeated over time and across individuals. Contrasting with the view that rest consists of only task-negative states, task-positive states occurred 40% of the time while individuals “rested,” suggesting task-focused activity may occur during rest. Together our results suggest that brain activation dynamics form a general hierarchy across task and rest, with a small number of dominant general states reflecting basic functional modes and a variety of specific states potentially reflecting a wide variety of cognitive processes.
  • 机译 静止状态功能磁共振成像和概率扩散张量成像表明,在拇指区域中发生了手运动关节中最大的功能和结构连通性
    摘要:The primary hand motor region is classically believed to be in the “hand knob” area in the precentral gyrus (PCG). However, hand motor task-based activation is often localized outside this area. The purpose of this study is to investigate the structural and functional connectivity driven by different seed locations corresponding to the little, index, and thumb in the PCG using probabilistic diffusion tractography (PDT) and resting-state functional magnetic resonance imaging (rfMRI). Twelve healthy subjects had three regions of interest (ROIs) placed in the left PCG: lateral to the hand knob (thumb area), within the hand knob (index finger area), and medial to the hand knob (little finger area). Connectivity maps were generated using PDT and rfMRI. Individual and group level analyses were performed. Results show that the greatest hand motor connectivity between both hemispheres was obtained using the ROI positioned just lateral to the hand knob in the PCG (the thumb area). The number of connected voxels in the PCG between the two hemispheres was greatest in the lateral-most ROI (the thumb area): 279 compared with 13 for the medial-most ROI and 9 for the central hand knob ROI. Similarly, the highest white matter connectivity between the two hemispheres resulted from the ROI placed in the lateral portion of PCG (p < 0.003). The maximal functional and structural connectivity of the hand motor area between hemispheres occurs in the thumb area, located laterally at the “hand knob.” Thus, this location appears maximal for rfMRI and PDT seeding of the motor area.
  • 机译 儿童急性淋巴细胞白血病长期存活者的脑网络连通性和执行功能
    摘要:Chemotherapeutic agents used to treat acute lymphoblastic leukemia (ALL), the most common cancer affecting young children, have been associated with long-term cognitive impairments that reduce quality of life. Executive dysfunction is one of the most consistently observed deficits and can have substantial and pervasive effects on academic success, occupational achievement, psychosocial function, and psychiatric status. We examined the neural mechanisms of executive dysfunction by measuring structural and functional connectomes in 161 long-term survivors of pediatric ALL, age 8–21 years, who were treated on a single contemporary chemotherapy-only protocol for standard/high- or low-risk disease. Lower global efficiency, a measure of information exchange and network integration, of both structural and functional connectomes was found in survivors with executive dysfunction compared with those without dysfunction (p < 0.046). Patients with standard/high- versus low-risk disease and those who received greater number of intrathecal treatments containing methotrexate had the lowest network efficiencies. Patients with executive dysfunction also showed hyperconnectivity in sensorimotor, visual, and auditory-processing regions (p = 0.037) and poor separation between sensorimotor, executive/attention, salience, and default mode networks (p < 0.0001). Connectome disruption was consistent with a pattern of delayed neurodevelopment that may be associated with reduced resilience, adaptability, and flexibility of the brain network. These findings highlight the need for interventions that will prevent or manage cognitive impairment in survivors of pediatric acute lymphoblastic leukemia.
  • 机译 创伤性轴索损伤后表征病变内信号并映射脑网络连通性:7 Tesla静止状态FMRI研究
    摘要:Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. In this study, we characterize RS-FMRI signal time course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury (hTAI) lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of (1) temporal signal-to-noise ratio (tSNR); (2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM); and (3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared with the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Furthermore, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hTAI.
  • 机译 部署后获得性创伤性脑损伤与创伤后应激障碍的发展有关,从而增加了小世界网络拓扑
    摘要:Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.
  • 机译 慢性失语症的治疗诱导可塑性与行为改善和中风后时间有关
    摘要:Cortical reorganization after stroke is thought to underlie functional improvement. Patterns of reorganization may differ depending on the amount of time since the stroke or the degree of improvement. We investigated these issues in a study of brain connectivity changes with aphasia therapy. Twelve individuals with chronic aphasia participated in a 6-week trial of imitation-based speech therapy. We assessed improvement on a repetition test and analyzed effective connectivity during functional magnetic resonance imaging of a speech observation task before and after therapy. Using structural equation modeling, patient networks were compared with a model derived from healthy controls performing the same task. Independent of the amount of time since the stroke, patients demonstrating behavioral improvement had networks that reorganized to be more similar to controls in two functional pathways in the left hemisphere. Independent of behavioral improvement, patients with remote infarcts (2–7 years poststroke; n = 5) also reorganized to more closely resemble controls in one of these pathways. Patients with far removed injury (>10 years poststroke; n = 3) did not show behavioral improvement and, despite similarities to the normative model and overall network heterogeneity, reorganized to be less similar to controls following therapy in a distinct right-lateralized pathway. Behavioral improvement following aphasia therapy was associated with connectivity more closely approximating that of healthy controls. Individuals who had a stroke more than a decade before testing also showed plasticity, with a few pathways becoming less like controls, possibly representing compensation. Better understanding of these mechanisms may help direct targeted brain stimulation.
  • 机译 纵向神经影像研究中的磨损预测因素:抑制性控制,头部运动和静止状态功能连接
    摘要:Attrition is a major problem in longitudinal neuroimaging studies, as it may lead to unreliable estimates of the stability of trait-like processes over time, of the identification of risk factors for clinical outcomes, and of the effects of treatment. Identification of characteristics associated with attrition has implications for participant recruitment and participant retention to achieve representative longitudinal samples. We investigated inhibitory control deficits, head motion, and resting-state functional connectivity within the cognitive control network (CCN) as predictors of attrition. Ninety-seven individuals with remitted major depressive disorder or healthy controls completed a functional magnetic resonance imaging scan, which included a go/no-go task and resting-state functional connectivity. Approximately 2 months later, participants were contacted and invited to return for a second scan. Seventeen individuals were lost to follow-up or declined to participate in the follow-up scan. Worse inhibitory control was correlated with greater movement within the scanner, and each predicted a greater likelihood of attrition, with movement mediating the effects of inhibitory control on attrition. Individuals who dropped out of the study exhibited greater movement than nondropouts across 9 of the 14 runs of the scan, with medium-to-large effect sizes. Finally, exploratory analyses suggested that attenuated resting-state connectivity with the CCN (particularly in bilateral dorsolateral prefrontal cortex) was associated with greater likelihood of attrition after accounting for head motion at several levels of analysis. Inhibitory control and movement within the scanner are associated with attrition, and should be considered for strategic oversampling and participant retention strategies to ensure generalizability of results in longitudinal studies.
  • 机译 非独立成人饮酒者的饮酒问题,酒精期望值和丘脑休息状态功能连接
    摘要:Alcohol misuse is associated with thalamic dysfunction. The thalamus comprises subnuclei that relay and integrate information between cortical and subcortical structures. However, it is unclear how the subnuclei contribute to thalamic dysfunctions in problem drinking. We investigated resting-state functional connectivity (rsFC) of thalamic subregions in 107 nondependent drinkers (57 women), using masks delineated by white matter tractography. Thalamus was parceled into motor, somatosensory, visual, premotor, frontal association, parietal association, and temporal association subregions. Whole-brain linear regression, each against Alcohol Use Disorders Identification Test (AUDIT) and positive alcohol expectancy (AE) score with age as a covariate, was performed for each seed, for men and women combined, and separately. Overall, problem drinking was associated with increased thalamic connectivities, whereas AE was associated with a mixed pattern of increased and decreased connectivities. Motor, premotor, somatosensory, and frontal association thalamic connectivity with bilateral caudate head was positively correlated with AUDIT score in men and women combined. Connectivity of the right caudate head with frontal association and premotor thalamus was also positively correlated with AE score in men and women combined. In contrast, motor and premotor thalamic connectivity with a number of cortical and subcortical structures showed sex differences in the correlation each with AUDIT and AE score. In mediation analyses, AE score completely mediated the correlation between thalamic caudate connectivity and AUDIT score, whereas the model where AE contributed to problem drinking and, in turn, altered thalamic caudate connectivity was not supported. To conclude, thalamic subregional rsFCs showed both shared and distinct changes and sex differences in association with problem drinking and AE. Increased thalamic caudate connectivity may contribute to problem drinking via enhanced AE. The findings suggest the importance of examining thalamic subdivisions and sex in investigating the functional roles of thalamus in problem drinking.
  • 机译 有阅读困难的儿童在Stroop任务中执行功能网络的功能连接性发生了变化。
    摘要:Children with reading difficulties (RDs) often receive related accommodations in schools, such as additional time for examinations and reading aloud written material. Existing data suggest that these readers share challenges in executive functions (EFs). Our study was designed to determine whether children with RDs have specific challenges in EFs and define neurobiological signatures for such difficulties using magnetic resonance imaging (MRI) data. Reading and EFs abilities were assessed in 8–12-year-old children with RDs and age-matched typical readers. Functional MRI data were acquired during a Stroop task, and functional connectivity of the EFs defined network was calculated in both groups and related to reading ability. Children with RDs showed lower reading and EFs abilities and demonstrated greater functional connectivity between the EFs network and visual, language, and cognitive control regions during the Stroop task, compared to typical readers. Our results suggest that children with RDs utilize neural circuits supporting EFs more so than do typical readers to perform a cognitive task. These results also provide a neurobiological explanation for the challenges in EFs shared by children with RDs and explain challenges this group shares outside of the reading domain.
  • 机译 由于延长的动脉到达时间而导致的错误的静息状态fMRI连接图及其修复方法
    摘要:In resting-state functional MRI (rs-fMRI), functional networks are assessed utilizing the temporal correlation between spontaneous blood oxygen level-dependent signal fluctuations of spatially remote brain regions. Recently, several groups have shown that temporal shifts are present in rs-fMRI maps in patients with cerebrovascular disease due to spatial differences in arterial arrival times, and that this can be exploited to map arrival times in the brain. This suggests that rs-fMRI connectivity mapping may be similarly sensitive to such temporal shifts, and that standard rs-fMRI analysis methods may fail to identify functional connectivity networks. To investigate this, we studied the default mode network (DMN) in Moyamoya disease patients and compared it with normal healthy volunteers. Our results show that using standard independent component analysis (ICA) and seed-based approaches, arterial arrival delays lead to inaccurate incomplete characterization of functional connectivity within the DMN in Moyamoya disease patients. Furthermore, we propose two techniques to correct these errors, for seed-based and ICA methods, respectively. Using these methods, we demonstrate that it is possible to mitigate the deleterious effects of arterial arrival time on the assessment of functional connectivity of the DMN. As these corrections have not been applied to the vast majority of >200 prior rs-fMRI studies in patients with cerebrovascular disease, we suggest that they be interpreted with great caution. Correction methods should be applied in any rs-fMRI connectivity study of subjects expected to have abnormally delayed arterial arrival times.
  • 机译 帕金森氏病早期涉及的脑区域的弥散张量磁共振成像手段的变化。
    摘要:Many nonmotor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion-tensor imaging (DTI) is suitable for detecting changes in brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved region of interest-based analysis methods. Results showed that (i) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; (ii) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.
  • 机译 亨廷顿氏病基因突变载体和健康对照的一项大型研究中的全脑连接
    摘要:Huntington's disease (HD) is an inherited brain disorder characterized by progressive motor, cognitive, and behavioral dysfunctions. It is caused by abnormally large trinucleotide cytosine–adenine–guanine (CAG) repeat expansions on exon 1 of the Huntingtin gene. CAG repeat length (CAG-RL) inversely correlates with an earlier age of onset. Region-based studies have shown that HD gene mutation carrier (HDgmc) individuals (CAG-RL ≥36) present functional connectivity alterations in subcortical (SC) and default mode networks. In this analysis, we expand on previous HD studies by investigating associations between CAG-RL and connectivity in the whole brain, as well as between CAG-dependent connectivity and motor and cognitive performances. We used group-independent component analysis on resting-state functional magnetic resonance imaging scans of 261 individuals (183 HDgmc and 78 healthy controls) from the PREDICT-HD study, to obtain whole-brain resting state networks (RSNs). Regression analysis was applied within and between RSNs connectivity (functional network connectivity [FNC]) to identify CAG-RL associations. Connectivity within the putamen RSN is negatively correlated with CAG-RL. The FNC between putamen and insula decreases with increasing CAG-RL, and also shows significant associations with motor and cognitive measures. The FNC between calcarine and middle frontal gyri increased with CAG-RL. In contrast, FNC in other visual (VIS) networks declined with increasing CAG-RL. In addition to observed effects in SC areas known to be related to HD, our study identifies a strong presence of alterations in VIS regions less commonly observed in previous reports and provides a step forward in understanding FNC dysfunction in HDgmc.
  • 机译 切换语言模式:公式语言和命题语言的互补脑模式
    摘要:Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g., you know, have a nice day, how are you?) is increasingly recognized. The basic features of the functional anatomy of this language system have been described by studies of brain damage: left lateralization for propositional language and greater right lateralization and basal ganglia involvement for formulaic expressions. Positron emission tomography (PET) studies of cerebral blood flow (CBF) have established a cortical–subcortical pattern of brain activity predictive of syllable rate during phonological/lexical repetition. The same analytic approach was applied to analyzing brain images obtained during spontaneous monologues. Sixteen normal, right-handed, native English speakers underwent PET scanning during several language tasks. Speech rate for the repetition of phonological/lexical items was predicted by increased CBF in the left inferior frontal region and decreased CBF in the head of the right caudate nucleus, replicating previous results. A complementary cortical–subcortical pattern (CBF increased in the right inferior frontal region and decreased in the left caudate) was predictive of the use of speech formulas during monologue speech. The use of propositional language during the monologues was associated with strong left lateralization (increased CBF at the left inferior frontal region and decreased CBF at the right inferior frontal region). Normal communication involves the integration of two language modes, formulaic and novel, that have different neural substrates.
  • 机译 并非如此的全球血氧水平依赖性信号
    摘要:Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号