为提高分析含大量数据的动态心电时的准确性和分析效率,提出了一种基于改进的K均值聚类生成心搏模板的匹配方法.使用K均值聚类和波形反混淆技术进行循环纠错,生成可变宽心搏模板、并建立心搏模板库.利用可变宽心搏模板和相关系数相结合的策略,对动态心电中心搏进行快速准确分类.实验方法经心率失常数据库MIT-BIT和ANMA/ANSI标准验证,分类结果总体准确率达98.06%,达到了心搏分类目标.%To improve accuracy and efficiency when analyze morphology of large dataset of dynamic electrocardiography(ECG),a ECG beat classification method based on beat templates generated by improved K-means clustering is presented.It takes K-means clustering and DEMIX technology to correct errors circularly, generates variable-width beat templates and establish beat templates database. By using the strategy which combines variable-width beat templates with correlation coefficient,the method can classify the ECG beats efficiently and accurately. The experimental verification is evaluated on the MIT-BIT arrhythmia database and ANMA/ANSI standard,and the overall accuracy rate of classification result is 98.06%,it achieves the goal of beats classification.
展开▼