首页> 中文期刊> 《天津大学学报:英文版》 >Anode Simulation and Cathode Design for Electrolytic Dressing of Diamond Profile Wheel

Anode Simulation and Cathode Design for Electrolytic Dressing of Diamond Profile Wheel

     

摘要

The design methods of anode and cathode are proposed for precision profile grinding. Based on the electrolytic machining theory, electrolytic equilibrium condition and Faraday′s law of electrolysis are applied to establishing the mathematical model of profile diamond dressing process- es. A finite element method (FEM) program is developed to solve the inverse boundary problem of Laplace′s equation. Desired anode contour or cathode shape is determined by computing the distribution of electric potential layer by layer. Electrolytic machining experiment is carried out to verify the simulated anode shape. The research result shows that shape deviation between designed cathode and profile wheel increases with the value of angle between feed rate and the normal to anode surface. The shape of simulated anode is consistent with the contour of metal-bonded diamond profile wheel for a given cathode. Based on the anode contour, cathode shape can also be designed accurately.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号