首页> 中文期刊> 《自动化仪表》 >基于经验模态条件生成对抗网络的短期负荷预测

基于经验模态条件生成对抗网络的短期负荷预测

     

摘要

针对双碳目标下传统负荷预测模型难以捕捉数据内部时序特征导致负荷预测精度不高的问题,提出一种基于经验模态条件生成对抗网络(CGAN)的短期负荷预测模型。该模型在保留CGAN结构的基础上,首先使用经验模态分解(EMD)将历史负荷数据分解为多个经验模态分量,并采用多个长短期记忆(LSTM)神经网络作为生成器、卷积神经网络(CNN)作为判别器。然后,以分解后的经验模态分量为输入、负荷影响因素为条件对模型进行训练,使生成器能够输出精确的预测负荷数据。最后,以某地区配电网实际负荷数据对模型进行验证。试验结果表明,相比于其他基于深度学习的负荷预测模型,所提模型具有更小的预测误差。未来可将该方法应用于配电网调度中,以提高调度的安全性和经济性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号