首页> 中文期刊> 《模式识别与人工智能》 >自适应级联神经网络对脑电信号分类的研究

自适应级联神经网络对脑电信号分类的研究

     

摘要

为克服神经网络受噪声和冗余特征的影响而出现过拟合,提出一种自适应级联神经网络(ACNN)及学习算法。ACNN从少量特征开始学习,在学习过程中根据特征对分类的有效性增加新特征,用映射递归算法调节权值,逐步确定网络结构,使其含有最少数目的输入和隐层神经元。此方法应用于区分两种思维状态下的脑电信号(EEG),经训练的网络对测试段的分类正确率为83.1%,与文献[1]中采用BP网络的结果相比,显示了ACNN较好的分类能力。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号