首页> 中文期刊> 《模式识别与人工智能》 >一种基于依赖分析的贝叶斯网络结构学习算法

一种基于依赖分析的贝叶斯网络结构学习算法

     

摘要

贝叶斯网络是不确定性环境下知识表示和推理的有效工具之一。现有的贝叶斯网络结构学习算法不同程度地存在学习效率偏低的问题,为此,本文提出一种高效而且可靠的贝叶斯网络结构学习算法ISOR。首先使用最大生成树算法和启发式切割集搜索算法以确定网络中所有可能的边,然后结合碰撞识别方法和启发式打分-搜索方法识别出所有边的方向,最后进行冗余边检验。与当前基于依赖分析的其它算法相比,该算法有效降低条件独立性检验的次数和阶数。算法分析和应用于Alarm网络的实验结果均表明,算法ISOR具有良好的性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号