首页> 中文期刊> 《组合机床与自动化加工技术》 >基于SAE与深度Q网络的旋转机械故障诊断

基于SAE与深度Q网络的旋转机械故障诊断

     

摘要

为了解决传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系问题,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法.首先,建立故障诊断"博弈"模型从而为故障诊断代理提供观察、行动和获得奖励的交互式环境;其次,堆叠式自动编码器采用完全连接模型进行逐级的内在特征学习进一步构建了故障诊断代理,然后通过引入记忆回放和迭代更新策略以及奖励反馈机制,使得深度Q网络实现了原始振动信号与故障模式之间的非线性映射关系.实验结果显示提出的方法在滚动轴承以及液压泵故障诊断上具备较高的诊断精度,验证了该方法能够有效地实现了旋转机械端到端的故障诊断.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号